В гражданской авиации на глобальном уровне по затратам на исследования и разработки лидируют четыре крупнейших компании – Boeing, Airbus, Embraer и Bombardier. Именно они генерируют основное число инноваций, и определяют параметры «самолета будущего».
Статьи
Интересное

Современный истребитель Сразу после того, как люди научились летать, они стали использовать летательные аппараты для ведения боевых действий. И всем сразу стало понятно, что тот кто имеет преимущество в небе, и намного больше шансов выиграть любую войну, - так гонка вооружений добралась и до неба. Еще начиная со времен первой мировой войны, все развитые страны ведут гонку в разработке военных самолетов.


Над Донбассом сбили два военных самолета Над Донбассом были сбиты два украинские военные самолеты Су-25. Пилоты успели катапультироваться. Представители украинской армии утверждают, что самолеты были сбиты ракетами земля-воздух в районе населенного пункта Саур-Могила в Донецкой области на границе с Россией. В свою очередь, присутствующий на месте журналист одного из украинских телеканалов, говорит, что одна из машин выполняла боевую задачу в районе Лисичанска в Луганской области.


Бомбежка Барановичей 15 сентября 1939 Вторая мировая война пришла на белорусскую землицу не 22 июня 1941г, а на два года раньше, когда. Третий Рейх и СССР делили Центральную Европу. Пишет Руслан Ревяко.








Немецкие историки назвали точное число жертв бомбардировки ДрезденаВ результате бомбардировки Дрездена авиацией союзников в феврале 1945 года погибло около 25 тысяч человек. К такому выводу после шести лет работы пришла комиссия немецких историков, созданная в 2004 году по требованию городских властей. Официальный доклад комиссии был представлен в среду, 17 марта. По словам главы комиссии Рольф - Дитер Мюллера, историки могут достоверно подтвердить гибель 18 тысяч человек.


B-2 Spirit - самый дорогой в мире бомбардировщикB-2 Spirit - самый дорогостоящий многоцелевой бомбардировщик в мире. Хотя он, не только бомбардировщик, но и просто самолет. В 1997 году это чудо инженерной техники стоило 2 млрд долларов. А если учесть инфляцию, то сейчас B-2 Spirit стоил бы просто фантастические 10000000000 зеленых. И бомбардировщик на все сто процентов оправдывает свою самую высокую цену. Его главное предназначение - прорыв ПВО противника.


Бомбардировщик ТУ-2 как украшение Троещины На киевской окраине действует настоящий "троещинский Голливуд" - большая киностудия FILM.UA. Здесь снято немало известных фильмов, сериалов, телепрограмм. Киношники имеют немало уникальных коллекций международного исторического значения. А у жителей массива киностудия ассоциируется прежде всего с макетом самолета ТУ-2 в реальном размере.


Фотогалерея
Ассамблея ИКАО
Все фото »
Партнеры
Календарь новостей
«    Декабрь 2016    »
ПнВтСрЧтПтСбВс
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
 

Эволюция конструктивных форм самолета


Из данных, приведенных в настоящей статье, следует, что в разные периоды развития сверхзвуковых самолетов проводились в жизнь различные подходы к их разработке. Каждый из них в свое время представлялся логичным и рациональным. Однако научно-технический прогресс непрерывно корректирует представление об оптимальных решениях, вследствие чего естественно предположить, что следующие поколения самолетов будут создаваться на основе иных предпосылок в сравнении с теми, которые определяли создание самолетов в прошлом.

Эволюция крыла

Крыло не только представляет собой основной узел планера самолета, создающий подъемную силу, но оно также решающим образом влияет на аэродинамическое сопротивление и определяет устойчивость и управляемость самолета. С этой точки зрения одной из самых важных проблем, которые нужно разрешить в процессе проектирования самолета, является проблема оптимального выбора формы крыла и его параметров - геометрических, аэродинамических, прочностных и т.п. Таким образом, только оптимальное согласование противоречивых требований (главным образом аэродинамики и прочности) может обеспечить успех, т.е. получение желаемых летных характеристик самолета. В результате теоретических и экспериментальных исследований установлено, что самым эффективным средством снижения волнового сопротивления и смягчения кризисных явлений при околозвуковых скоростях является использование стреловидных крыла и оперения. Реализация в планере самолета идеи Стреловидности позволила относительно просто превзойти скорость звука. Известно, что в самолетах с прямым крылом и достаточно большой толщиной профиля преодоление звукового барьера путем форсирования тяги создавало существенные трудности в управлении и приводило к аварийным ситуациям, тогда как в самолетах со стреловидным крылом при околозвуковых скоростях катастроф уже не отмечалось. Еще более эффективным (на определенном этапе развития самолетостроения) оказалось использование треугольного крыла, которое сочетает в себе черты большой стреловидности, малого удлинения и малой относительной толщины профиля при требуемой жесткости. Эта последняя особенность исключительно полезна, так как жесткость стреловидного крыла с возрастанием угла стреловидности быстро уменьшается, что приводит к новым затруднениям, в частности к увеличению массы конструкции ввиду необходимости сохранения требуемой жесткости.

Прямое крыло

Приемлемые взлетно-посадочные характеристики самолета в этом случае обеспечиваются еще и тем, что на прямом крыле удается разместить эффективную механизацию, расширяющую диапазон эксплуатационных скоростей. Благодаря указанным достоинствам прямые крылья умеренного удлинения нашли широкое применение не только в дозвуковых, но и в околозвуковых самолетах с реактивным двигателем. Ситуацию ухудшает еще и тот факт, что при переходе через скорость звука у самолетов с прямым крылом происходит значительное изменение положения центра давления, а значит, и изменение балансировки, которое трудно скомпенсировать при помощи одного только руля высоты. Некоторое улучшение характеристик достигается при использовании крыла с небольшим удлинением н тонким сверхзвуковым профилем. Крыльями этого типа оснащены, например, такие самолеты, как F-104, F-5A, Т-38, «Тридан» И и Т. 188. Крыло последнего из названных самолетов по форме приближается к треугольному, поскольку в исследованиях установлено, что вредное влияние перемещения центра давления назад при превышении скорости звука может быть несколько уменьшено, если концевым частям крыла дать больший угол стреловидности. Так как удлинение таких крыльев обычно невелико (2-4), то упрощается задача обеспечения достаточной жесткости. Важнейшими достоинствами прямого крыла с малым удлинением в сравнении со стреловидным И треугольным являются (при таких же относительной толщине профиля и удлинении) лучшие аэродинамические характеристики при докритических скоростях, главным образом при приземлении. Зато их основной недостаток-большое сопротивление и невысокое аэродинамическое качество при околозвуковых скоростях. Эти отрицательные эффекты сжимаемости воздуха можно несколько смягчить, используя еще меньшее удлинение и более тонкий профиль крыла, Однако надлежащую прочность такого крыла можно получить лишь за счет увеличення массы конструкции. Поэтому прямое крыло хотя и легче стреловидного, но по массовым характеристикам уступает треугольному крылу с теми же параметрами. Считается, что применение тонких прямых крыльев малого удлинения целесообразно лишь в самолетах с М > 1,8, Волновой кризис преодолевается такими самолетами с помощью форсажа двигателя либо путем использования дополнительных ускорителей. Вследствие этих недостатков прямые крылья нашли лишь ограниченное применение в сверхзвуковой авиации (известно только 11 типов самолетов с прямыми крыльями среднего и малого удлинения).

Стреловидное крыло

Большинство современных около- и сверхзвуковых самолетов гражданской и боевой авиации имеет стреловидные крылья постоянной геометрии (29 самолетов), что связано с их несомненными аэродинамическими достоинствами при таких скоростях полета. Широкое распространение крыльев этого типа обусловило большое разнообразие применяемых конструктивных решений и их модификаций с целью наилучшего использования достоинств и устранения или смягчения недостатков, связанных со стреловидностью передней кромки крыла. Стреловидность приводит к возрастанию изгибающего момента в корневом сечении крыла при данной массе самолета. Кроме того, несколько увеличивается масса крыла в связи с необходимостью введения дополнительных силовых элементов в корневых частях, а также из-за увеличения поверхности механизации. Дополнительный рост массы стреловидного крыла связан с менее благоприятным (по сравнению с прямым крылом) распределением давления по его длине, что выражается в увеличении плеча приложения подъемной силы, требующем усиления конструкции, и т.д. Широкое применение стреловидного крыла стало возможным благодаря проведению соответствующих аэродинамических и конструктивных мер, проявляющих его достоинства и смягчающих недостатки.

Крыло с наплывом

Анализ недостатков и достоинств прямых и стреловидных крыльев показывает, что диапазоны благоприятных условий их применении в сверхзвуковых самолетах не совпадают, а дополняют друг друга. Ввиду этого около 20 лет тому назад начали разрабатываться крылья изменяемой геометрии (проблемы самолетов с изменяемой геометрией крыла рассмотрены отдельно), а несколько позднее -к рылья, которые условно можно назвать стреловидно-прямыми. Оба эти новшества впервые внедрены в боевой авиации, поскольку боевые самолеты, помимо прочего, должны обладать высокой маневренностью, под которой понимается способность экономичного и быстрого выполнения маневров. Другую часть ограничении образует множество физических эффектов, таких, как максимальная величина коэффициента подъемной силы, возрастание полетного сопротивления, изменение эффективности управления, потеря устойчивости, вибрации крыла и оперения, крены, происходящие из-за срыва потока на крыльях при большой скорости полета, и т.п. Главный источник аэродинамических ограничений-отрыв потока, проявляющийся в различных формах и по разным причинам. Поэтому задача аэродинамического проектирования боевого самолета имеет первостепенную важность, так как качество решения этой задачи определяет достоинства нового летательного аппарата.

Эволюция форм самолета

Одним из средств, позволяющих контролировать процесс отрыва, является крыло с переменной стреловидностью по передней кромке (наплывом), которое характеризуется образованием пелены вихрений большой энергии, определяющей его аэродинамические свойства. Для выяснения характера работы крыла с наплывом (или другим устройством турбулизации набегающего потока} необходимо напомнить, что вообще крылья по характеру обтекания можно разделить на два типа-линейно работающие и работающие нелинейно. Теоретически линейно работающее крыло отличает безотрывное обтекание, а нелинейно работающее-отрыв потока воздуха вблизи передней кромки и его присоединение ниже по потоку к остальной поверхности крыла. В практике самолетостроения нашли применение оба типа крыла, из которых первое вследствие его повсеместного использования было названо классическим. Крылья, работающие линейно, обычно имеют умеренный угол стреловидности по передней кромке н удлинение, превышающее 2-3, а также соответствующие аэродинамические и конструктивные средства, обеспечивающие безотрывное обтекание. Характерной чертой нелинейно работающих крыльев является большой угол стреловидности по передней кромке и среднее либо малое удлинение. Примером применения нелинейного крыла может служить самолет «Дракен», у которого треугольное крыло с изломом передней кромки фактически представляют собой комбинацию двух крыльев с малым удлинением (однако же с закругленной передней кромкой). Их можно трактовать как две несущие поверхности, работающие нелинейно. Зато в прямом трапециевидном крыле с большим углом стреловидности наплыва, использованном, например, в самолете F-5, оба типа обтекания возникают последовательно друг за другом. Достоинства и недостатки линейного и нелинейного крыльев известны давно, однако только в начале 70-х годов предприняты попытки совместить их преимущества. Так было создано трапециевидное крыло с наплывом, являющееся комбинацией линейно работающего трапециевидного основного крыла с закругленной передней кромкой и нелинейно работающего стреловидного (или треугольного} крыла с малым удлинением и острой криволинейной передней кромкой с большим углом стреловидности. Таким образом, главной особенностью крыла с наплывом является одновременное наличие обоих типов обтекания, что позволяет увеличить коэффициент подъемной силы и критическое число Маха к уменьшить коэффициент индуктивного сопротивления при больших углах атаки в диапазоне дозвуковых и околозвуковых скоростей, а также волновое и балансировочное сопротивления в диапазоне сверхзвуковых скоростей. Такой эффект возникает в результате использования малого сопротивления линейно работающего основного крыла при малых углах атаки с сохранением большой подъемной силы и малого сопротивления нелинейно работающего вспомогательного крыла (наплыва) при больших углах атаки. На основании комплексных исследований в гидродинамических каналах и в аэродинамических трубах установлено, что наиболее благоприятные характеристики имеет крыло с наплывом, обладающим углом стреловидности 70°. Действие крыла с наплывом можно описать следующим образом: спиральный поток вихрей, срывающихся с острой передней кромки большой стреловидности в околофюзеляжной части крыла, ограничивает расширяющуюся с увеличением угла атаки область, отрыва, расположенную между передней кромкой крыла и линией присоединения воздушного течения. В сверхзвуковом же полете дополнительная плоскость, размещенная перед основным крылом, уменьшает интервал перемещения центра давления назад, что не только обеспечивает сохранение надлежащей устойчивости, но и одновременно уменьшает балансировочное сопротивление на 20%. Эффективность крыла с наплывом значительно возрастает при оснащении его носовыми щитками но всему размаху, а также однощелевыми или двух щелевым и выдвижными закрылками. Крылья с наплывом применены в трех новейших самолетах американской истребительной авиации F-16, YF-17 и F-1S. Из опубликованных данных самолетов «Конкорд» и «Мираж» 2000 следует, что некоторые характеристики рассматриваемого крыла можно получить также путем использования небольших горизонтальных несущих плоскостей, размещенных в носовой части фюзеляжа. Ввиду отсутствия более полной информации можно лишь предположить, что эти плоскости выполняют также роль турбулизаторов в полете при больших углах атаки.

С верх критическое крыло

Интересный пример модификации стреловидного крыла представляет собой также так называемое сверх критическое крыло. (Название происходит от большего критического числа Маха этого крыла в сравнении с классическим стреловидным,) Для этого крыла характерно использование уплощенных профилей с соответствующим образом изогнутой задней частью, что дает более равномерное распределение давления, а также увеличивает критическое число Мала на 10-15%. Это равносильно увеличению скорости околозвукового самолета (с максимальной скоростью — 1000 км/ч) почти на 100-150 км/ч без возникновения волнового кризиса. В других отношениях выгоды от использования сверхкритического крыла невелики, а технология изготовления гораздо сложнее; тем не менее в околозвуковых пассажирских самолетах с реактивным двигателем оно может оказывать существенное влияние на экономичность эксплуатации. Для иследования свойств таких крыльев был использован сверхзвуковой самолет «Крусейдер», а также модернизирован опытный образен самолета F-111A TACT.

Треугольное крыло

Стремление к уменьшению массы и повышению жесткости крыла принуждает уменьшать его удлинение и увеличивать сужение. Такая тенденция одновременно с большим углом стреловидности приводит к треугольной форме крыла. Практическое применение получили треугольные крылья с углом стреловидности 55-70°, Наряду с «чисто треугольным» используются также крылья с усеченными концами, а также с небольшим отрицательным или положительным углом стреловидности задней кромки, В отношении аэродинамики эти крылья незначительно отличаются друг от друга, а разнятся лишь конструктивными особенностями. Треугольное крыло имеет практически такие же аэродинамические характеристики, как и стреловидное, но зато оно избавлено от некоторых недостатков последнего. Применение треугольного крыла определяется главным образом прочностными и конструктивными соображениями. Треугольное крыло жестче и легче как прямого, так и стреловидного (при тех же параметрах их масса составляет 8-11% по сравнению с 12-15% взлетной массы самолета). Благодаря большой хорде в корневом сечении в треугольном крыле возможно использование профилей меньшей относительной толщины, Кроме того, большая строительная высота в корневой части позволяет лучше использовать внутренний объем крыла и упрощает передачу нагрузок на фюзеляж. Недостатками треугольного крыла являются возникновение и развитие волнового кризиса и примерно такая же, как у стреловидного, зависимость аэродинамических характеристик от скорости полета. Кроме того, большие значения коэффициента подъемной силы треугольного крыла можно получить лишь на таких больших углах атаки, которые недостижимы при используемых в настоящее время высотах шасси (на обычных для приземления углах атаки коэффициент подъемной силы треугольного крыла на 30-40% меньше, чем у прямого, а возможность механизации такого крыла с целью увеличения коэффициента подъемной силы при посадке ограничена малым его размахом). Названные недостатки усугубляются по мере увеличения угла стреловидности передней кромки и острее всего проявляются во время приземления. Для получения приемлемых посадочных характеристик самолета с треугольным крылом удельная нагрузка на крыло не должна быть большой, а угол стреловидности передней кромки ограничивается значениями 60-65". Из этого следует, что достоинства треугольного крыла лучше всего проявляются при больших (сверхзвуковых) скоростях полета, когда высокая жесткость конструкции и малая относительная толщина профиля оказывают определяющее влияние на летно-технические характеристики самолета. Диапазон скоростей, в котором треугольное крыло оптимально, распространяется от скорости звука до М ~ 2. Большие скорости требуют увеличения угла стреловидности передней кромки больше используемых в настоящее время углов 60-65° ценой отказа от хороших характеристик передней кромки с умеренным углом стреловидности и закругленным носком при дозвуковых скоростях. Следовательно, достоинства треугольного крыла особенно привлекательны для сверхзвуковых самолетов, где оно нашло столь же широкое применение, что и стреловидное (создано 38 типов самолетов с треугольным крылом, в том числе четыре с оживальным-модификацией треугольного). Это стало возможным благодаря разработке множества эффективных способов смягчения недостатков треугольного крыла. Помимо конструктивных мер, характерных для стреловидного крыла, в треугольных крыльях используется, например, передняя кромка с изломом или с плавно изменяющимся углом стреловидности вдоль размаха (так было создано оживальное крыло, описанное в главе, посвященной пассажирским самолетам). Применяется также отгиб носка профиля. Излом передней кромки треугольного крыла осуществлен, например, в самолете «Дракен», а отгиб носка профиля-в самолете F-102A (работы проводились в расчете на самолет В-58). Разработка самолета «Дракен» была начата в 1949 г., т.е. в то время, когда в эксплуатации еще не было истребителей со стреловидным крылом. Первые из них (МиГ-15, F-86,129) выпущены позднее, а из сверхзвуковых самолетов с ракетным двигателем к тому времени были облетаны только Х-1 и D-588-И. В этой ситуации конструкторский коллектив рассмотрел множество вариантов нового самолета, причем наименьшее внимание уделялось компоновке с треугольным крылом без горизонтального оперения, находились еще под впечатлением катастроф первых самолетов с такой компоновкой (это были XF-92A и AVRO707). Совершенно иная концепция использована в процессе проектирования самолета B-5S. Считалось, что при высоких скоростях наилучшие характеристики обеспечивает треугольное крыло с прямолинейной передней кромкой, которое имеет большое критическое число Маха, а также малое волновое сопротивление. Проблема же ухудшения несущих свойств такого крыла при малых скоростях, особенно ограничение используемых углов атаки явлением срыва потока, разрешена другим путем. На основании проведенных исследований установлено, что хорошие результаты в этом отношении даст коническая крутка сечений крыла, те, постепенно увеличивающийся от корневого до концевого сечения отгиб передней кромки крыла к низу. Такая крутка затягивает срыв потока в концевых сечениях крыла до больших углов атаки и обеспечивает более благоприятное распределение подъемной силы вдоль размаха крыла, приближая его к идеальному (эллиптическому). Кроме того, направление вектора подъемной силы при этом приближается к вертикальному, благодаря чему уменьшается горизонтальная составляющая равнодействующей а> родинами ческой силы. Правда, при малых углах атаки сопротивление крыла с конической круткой несколько больше (вследствие локального отрыва потока на нижней поверхности). Прирост сопротивления оказывается незначительным, если крутка (как и закругление передней кромки) сочетается с большим углом стреловидности. Кроме того, благодаря увеличивающейся кривизне отогнутой лередней части профили концы крыла работают при меньших локальных углах атаки, чем корневые части. Вследствие этого отрыв потока на концах крыла возникает при большем угле атаки самолета, что существенно улучшает его летные качества (эффективность элеронов), а также распределение нагрузки на крыло вдоль размаха (аналогичный эффект получается при использовании аэродинамической или геометрической турбулизации).

Эволюция фюзеляжа

Непрерывный рост удельной нагрузки на крыло, а также уменьшение относительной толщины профиля (т.е. уменьшение габаритов и особенно внутренних объемов крыла) приводят к тому, что в современных боевых самолетах оборудование, вооружение, часть топливных емкостей (а часто и двигательная установках боевая нагрузка и т.п., не говоря уже о кабине экипажа, размещаются в фюзеляже. Кроме того, фюзеляж объединяет в единое целое отдельные части планера самолета-крыло, оперение и шасси. Эти обстоятельства приводят к увеличению размеров фюзеляжа И, следовательно, к ухудшению аэродинамических характеристик всего самолета, главным образом в результате возрастания коэффициента сопротивления. Некоторые размеры фюзеляжа, особенно его длина, определяются не только необходимым полезным пространством, но также и минимально допустимым с точки зрения устойчивости и управляемости расстоянием от оперения (в первую очередь горизонтального) до центра тяжести самолета. В первые 10-15 лет разработки и эксплуатации сверхзвуковых самолетов считалось, что аэродинамически наиболее совершенной формой фюзеляжа является форма тела вращения с удлинением, зависящим от скорости полета. Благодаря пространственному характеру обтекания фюзеляжа волновой кризис возникает на нем позже, чем на профиле крыла с такой же относительной толщиной. Ввиду этого первые сверхзвуковые самолеты со скоростью полета около 14О0 км/ч имели веретенообразные фюзеляжи, т.е. с контуром обычного дозвукового симметричного профиля; носовая часть закруглена но небольшому радиусу, миделево сечение расположено на 40-50% длины от передней точки и удлинение фюзеляжа равно 6-8. При увеличении сверхзвуковой скорости полета волновое сопротивление такого фюзеляжа значительно возрастает, поэтому оказалось необходимым применение фюзеляжей с остроконечной носовой частью и малой относительной толщиной, т.е. с удлинением до 10 и даже до 15 (особенно в тяжелых самолетах). В случае однодвигательного самолета с лобовым воздухозаборником и соплом в «усеченной» хвостовой части длина фюзеляжа (и соответственно поверхность, обтекаемая внешним потоком) существенно уменьшается, вследствие чего уменьшается и аэродинамическое сопротивление. Таким образом, в конкретных случаях отклонение от теоретических форм для удовлетворения требований, касающихся компоновки, технологии, массы, прочности конструкции и т.п., может практически не ухудшать летных качеств самолета. Поскольку применяемые двигательные установки при заданных габаритах и массе имеют ограниченную тягу, особое внимание при проектировании обращается на профилирование больших выступающих элементов фюзеляжа (надстроек), таких, как кабина, воздухозаборники и радиолокационные устройства. Эти надстройки, если они не имеют аэродинамически правильных форм, не только увеличивают сопротивление (уменьшая Мр), но также на некоторых режимах полета уменьшают устойчивость и могут быть причиной появления вибраций. Чтобы избежать этого, надстройки вписываются по мере возможности в общую форму фюзеляжа, а выступающим элементам придаются большие углы наклона лобовых поверхностей и плавные очертания, переходящие в очертания фюзеляжа. Много внимания уделяется также аэродинамическому проектированию элементов соединения фюзеляжа с другими частями планера, особенно с крылом. Аэродинамическая интерференция между крылом и фюзеляжем при нерациональном их сочленении вызывает дополнительный прирост сопротивления, уменьшает Мир, а в некоторых случаях ведет к потере устойчивости (особенно при больших углах атаки) либо к возникновению вибраций оперения (бафтингу). При небольших скоростях полета интерференция вызывает преждевременный отрыв воздушного потока вследствие появления диффузорного эффекта между стенкой фюзеляжа и верхней поверхностью крыла. С этой точки зрения хуже всего схема низкоплана (построен 21 самолет такой схемы), особенно с фюзеляжем круглого сечения и прямым крылом. Поэтому в области соединения крыла с фюзеляжем часто предусматривают специальные обтекатели (зализы), предназначенные для выравнивания потока. Среднеплан (42 самолета), а особенно высокоплан (25 самолетов) в этом отношении гораздо лучше, так как устойчивость у высоконлана выше, хотя он и уступает средненлану по величине сопротивления. При больших дозвуковых скоростях полета явление интерференции зависит от взаимного наложения полей скоростей вокруг крыла и фюзеляжа. В неблагоприятном случае это может стать причиной преждевременного достижения потоком воздуха локальных скоростей звука со всеми вытекающими из этого аэродинамическими последствиями, вызываемыми сжимаемостью воздуха. Соединение фюзеляжа со стреловидным или треугольным крылом также может создавать значительное волновое сопротивление. Для его уменьшения эти соединения выполняются так, чтобы не происходило наложения друг на Друга локальных областей пониженного и повышенного давлений. С этой точки зрения одним из важнейших достижений первого периода развития сверхзвуковых самолетов было установление так называемого правила площадей, состоящего в том, что комбинация крыла с фюзеляжем обладает наименьшим сопротивлением, когда распределение нормальных к потоку сечений по длине самолета имеет тот же характер, что и у тела вращения наименьшего сопротивления. Практически это означает уменьшение сечений фюзеляжа в области крыла на величину, равную площади соответствующего нормального к потоку сечения крыла. Эффективность правила площадей в отношении уменьшения волнового сопротивления зависит, конечно, помимо фюзеляжа, и от других частей самолета, тем не менее наилучшие результаты достигаются при вытянутых фюзеляжах и коротких тонких крыльях. Особенно это касается крыльев с малым удлинением, обтекание которых является пространственным и имеет тенденцию к осевой симметрии. В связи с этим в некоторых самолетах, как бы «от природы» соответствующих упомянутому правилу, можно почти полностью пренебречь характерным сужением фюзеляжа (как, например, у английского самолета «Лайтнинг»), Это происходит потому, что каждый из факторов, уменьшающих волновое сопротивление (малая относительная толщина профиля, большая стреловидность, малое удлинение крыла), является определенным шагом в направлении выполнения правила площадей, т.е. самолет, выполненный с соблюдением требований аэродинамики, приближается по форме к геометрическому телу с малым аэродинамическим сопротивлением. Невысокая эффективность правила площадей в отношении самолетов с М > 2 иногда служит поводом к отрицанию его, тем более что выполнение этого правила ведет к увеличению стоимости изготовления планера самолета, а также к уменьшению полезного объема фюзеляжа. Кроме того, многие современные самолеты располагают такой тяговооруженностью, что преодоление звукового барьера не представляет для них особой трудности. Однако, с другой стороны, необходимость приспосабливания самолетов, особенно многоцелевых, к долговременным полетам с околозвуковыми скоростями на малой высоте привела к тому, что большинство из них строится в соответствии с правилом площадей, хотя внешне это и не всегда заметно. За последние 10-20 лет появились сверхзвуковые самолеты, фюзеляж которых используется для создания подъемной силы. Такой фюзеляж имеет форму не тела вращения (конус-цилиндр-конус), а параллелепипеда. Это означает замену круглого или овального поперечного сечения фюзеляжа сечением, близким к прямоугольному, причем одна из больших сторон прямоугольника образует нижнюю часть фюзеляжа, которая и играет роль дополнительной несущей поверхности. Изменен то подвергся также н профиль самолета. Использовавшаяся ранее форма днища фюзеляжа с кривизной, очерченной практически дугой одного радиуса, была заменена формой с кривизной, описываемой тремя дугами, создающими выпуклость носовой и хвостовой частей и вогнутость средней части. Фюзеляж, обладающий такой формой, получил название несущего. Характерной чертой фюзеляжей этого типа является еще и то, что фюзеляжная часть планера у таких самолетов значительно больше. Несущие фюзеляжи имеют самолеты F-4, F-5, SR-71A, F-111A, Е-266, «Ягуар» и др. Другой, не менее характерной чертой сверхзвуковых самолетов является применение фюзеляжей с носовой частью, значительно выдвинутой вперед. Конечно, такое размещение больших масс вдоль оси самолета повлекло за собой существенное уменьшение отношения момента инерции относительно продольной оси к моментам инерции относительно других осей. Заметное удлинение самолета в сравнении с его размахом (длина фюзеляжа, отнесенная к размаху крыла, находится в пределах от 1,6 для самолета F-102A до 2,6 для самолета Х-3) не только ухудшило маневренность в вертикальной плоскости, но также затруднило поперечную управляемость ввиду слишком быстрого прироста угловой скорости при отклонении элеронов и управляемость по курсу вследствие возникновения эффектов обратного действия руля направления.

Общая схема самолета

Эволюция как крыла, так и фюзеляжа сверхзвукового самолета еще не завершена. Разнообразие возможных путей поиска и найденных конструктивных решений привело к большому разнообразию схем и конструкций сверхзвуковых самолетов. Взаимное положение частей планера и их назначение определяют аэродинамическую схему самолета. Выбор соответствующей схемы и форм частей планера обеспечивает определенные аэродинамические, прочностные, массовые, тактико-технические и прочие характеристики, т.е. определенные функциональные свойства самолета в процессе его эксплуатации. В большинстве построенных до настоящего времени самолетов (62) принята классическая (нормальная) схема как наиболее всесторонне исследованная и оправдавшая себя на практике и лишь в двух случаях принята схема «утка» (XFY-12A и «Мираж» 4000)L В остальных 24 случаях использована схема без горизонтального оперения («бсехвостка»), но в модификациях, сохраняющих достоинства классической схемы с одновременным исключением ее недостатков. Таким путем были разработаны аэродинамические схемы самолетов со свойствами, промежуточными между схемами «утка» и «бесхвостка». Это самолеты «Гриффон», XB-7GA, F-4CCV, YF-16CCV и «Кфир» С2 со стационарными либо подвижными дополнительными поверхностями, «Мираж-Милан», Ту-144 и F-14 с убираемыми дестабилизаторами, а также «Вигген», выполненный по схеме биплан-тандем. Принятая аэродинамическая схема самолета обычно свидетельствует об индивидуальности конструктора, но тем не менее она всегда опирается на глубокий теоретический анализ и экспериментальные исследования, и ее принятие обусловлено рациональными предпосылками. Например, в самолете XB-7QA с проектной крейсерской скоростью М = 3 использовано треугольное в плане крыло с отклоняемых концевыми частями. При малых скоростях они образуют единую плоскость с основными частями крыла, благодаря чему при взлете н посадке удельная нагрузка на крыло меньше, а подъемная сила больше. При полете с большей скоростью концы крыла отклоняются вниз, что обеспечивает необходимую продольную устойчивость самолета (центр давления крыла Оказывается ближе к центру тяжести самолета), а также позволяет обойтись горизонтальным оперением с поверх костью, почти вдвое меньшей, чем требуется обычно для условий сверхзвукового полета. Использование крыла такой конструкции приводит к уменьшению сопротивления самолета ввиду меньшего балансировочного сопротивления и сопротивления трения. Дестабилизирующая же плоскость (переднее крыло) во время взлета и посадки самолета ХВ-70А выполняет роль дополнительной несущей поверхности, размещенной перед центром тяжести самолета, что позволяет выполнять эти этапы полета на больших углах атаки без необходимости отклонения эле ионов кверху (и уменьшения в связи с этим подъемной силы крыла). Переднее крыло самолета ХВ-70А отличается высокой эффективностью, поскольку Оно Оснащено закрылками и расположено в носовой части самолета на значительном расстоянии от его центра тяжести. На остальных режимах полета закрылки заблокированы в нейтральном положении и вся дополнительная плоскость выполняет роль балансировочных рулей, что особенно полезно для уравновешивания продольного момента, возникающего в результате изменения положения центра давления при переходе через скорость звука. Другой особенностью самолета ХВ-70А (наряду с отклоняемыми концами крыла и дополнительной несущей поверхностью) является такой выбор его аэродинамической схемы, при котором скачок уплотнения используется для создания дополнительной подъемной силы. Этот эффект был обнаружен NAGA в первой половине 50-х годов при определении количеств движения потоков, обтекающих различные тела. Например, при симметричном обтекании конического тела с горизонтальной плоскостью посередине количество движения потока разделяется поровну вверх и вниз. Поскольку для самолета выгодно, чтобы вектор количества движения обтекающего потока был направлен книзу, то вначале исследовалось тело в форме полуконуса, обращенного плоской поверхностью кверху, с несущей поверхностью, совмещенной с этой плоскостью. Затем этой поверхности были приданы отогнутые книзу концы; такая аэродинамическая схема оказалась оптимальной. Помимо надлежащей формы крыла, необходимым условием создания дополнительной подъемной силы является соответствующее аэродинамическое проектирование части фюзеляжа, находящейся под крылом. В самолете ХВ-70А это средняя часть фюзеляжа, в которой располагаются воздушный канал и отсек двигательной установки, состоящей из шести двигателей. Под передней центральной частью крыла расположен воздухозаборник, центральный клин которого с углом прн вершине ~48° создает косой скачок с углом, зависящим от скорости потока (числа Маха). Поскольку самолет проектировался на крейсерскую скорость, соответствующую М = 3,0, то а этих условиях угол наклона косого скачка составляет — 65°. Именно поэтому в самолете XB-7QA треугольное крыло расположено так, что его передняя кромка оказывается непосредственно над первичным скачком. За этим скачком число Маха снижается на 0,3, а давление возрастает в среднем почти на 1,90 кПа. Расположенные ниже по потоку части фюзеляжа генерируют дальнейшие скачки уплотнения с тем же углом наклона, так что вся нижняя поверхность крыла оказывается над системой скачков, создающих область повышенного давления. Прирост подъемной силы в результате использования благоприятных эффектов скачков уплотнения позволяет выполнять полеты при меньших углах атаки. Например, если самолет нормальной аэродинамической схемы летит с крейсерской скоростью при угле атаки 4°, то для самолета XB-7QA этот угол составляет только 2е. Такое уменьшение угла атаки приводит к существенному уменьшению сопротивления самолета и снижению расхода топлива. Поскольку использование скачков уплотнения для создания дополнительной подъемной силы оказывается наиболее эффективным лишь при постоянной высокой сверхзвуковой скорости полета, т.е. когда угол наклона скачка уплотнения соответствует положению передней кромки крыла, то оно особенно целесообразно в пассажирских самолетах. Поэтому в самолетах Ту 144 и «Конкорд» с целью использования скачков обеспечено надлежащее взаимное положение гондол двигателей и передней кромки крыла. Самолет «Гриффон» имеет менее сложную аэродинамическую схему, так как его дополнительная поверхность является простой стационарной дестабилизирующей плоскостью. Зато в самолетах «Мираж-Милан» и Ту-144, как и у ХВ-70, дополнительные несущие поверхности выполнил более сложные функции, но их новизна заключается в том, что дополнительные несущие плоскости («усы») выдвигаются лишь при малых скоростях полета (т.е. используются исключительно при определенных условиях обтекания), что обеспечивает максимальную эффективность при взлете и посадке и исключает влияние этих плоскостей на летные качества самолета при сверх звуковых скоростях.

  • Категория: Сверхзвуковая авиация 60х годов
  • Просмотров: 4838
    Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
    Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
    Поиск по сайту
    Личный кабинет
    Актуально

    Ан-225 «Мрия» - самый большой в мире самолет Ан-225 «Мрия» - самый большой в мире самолет. Создал самолет киевский КБ имени Антонова. Этот уникальный самолет установил аж 240 мировых рекордов. Не несмотря на свой почтенный возраст и то, что существует лишь одна единица этого самолета, он все еще не уступает своим конкурентам. Если поступит заказ то будет достроен второй гигант, который готов лишь на 60-70%.


    Мировые авиакомпании приостанавливают рейсы в Израиль Полеты в Тель-Авив приостановили также польские авиалинии „LOT”. Авиакомпании из Европы и Соединенных Штатов Америки приостанавливают рейсы в Израиль. Причина - обострение израильско-палестинского конфликта. После того, как полтора километра от аэропорта „Бен Гурион” в Тель-Авиве упала ракета, Федеральная авиационная администрация США решила, что, как минимум, в течение суток свои рейсы в Израиль приостанавливают авиакомпании „Delta”, „United” и „US Airways”.


    Лондон: тысячи пассажиров улетели без багажа Тысячи пассажиров ждут за границей своих сумок и чемоданов, который потерялись во время вылета из Лондона. С четверга в лондонском аэропорту Heathrow наблюдается хаос с багажом. Тысячи пассажиров ждут за границей своих сумок и чемоданов, который потерялись во время вылета из Лондона. Дирекция аэропорта уверяет, что весь багаж будет найден.




    Капитан самолета не понял шуток...Шутки двух пассажиров стали причиной того, что пассажирский самолет был принудительно посажен парой британских истребителей. Шутки двух пассажиров стали причиной того, что пассажирский самолет был принудительно посажен парой британских истребителей. Лайнер с более чем 300 пассажирами и членами экипажа на борту направлялся из пакистанского Лахора в британский Манчестер.


    Польша закупает “Boeing 787 Dreamliner”Самолеты заказала польская авиакомпания LOT. Кстати, LOT является первыми в Европе авиалиниями, которые заказали эти современные авиалайнеры, сообщает газета “Rzeczpospolita”. “Boeing 787” ждут в Варшаве не только сотрудники польской авиакомпании и польские любители авиации, но также поклонники этого самолета в Европе. В интернете они объединяются в группы и покупают билеты на европейские трассы LOT, на которых будет летать “Dreamliner”.


    Из Минска в Гомель за час Еще до вылета предвзято отнесся к возможности попасть на самолете в Гомель.

    Скепсис был вызван возрастом самолетов АН - 24: последний экземпляр этой модели выпустили тридцать один год назад.

    Но, когда поднялись в воздух, понял, что возраст неопытному глазу пассажира замечается только по каким-то внешним деталям.


    Завод «Антонов» до конца года выпустит новый самолетГосударственное предприятие «Антонов» планирует до конца 2014 года завершить сборку первого опытного экземпляра нового самолета Ан-178 грузоподъемностью до 18 тонн. Сооружение опытного экземпляра нового Ан-178 грузоподъемностью до 18 т., который сменит на рынке Ан-12 начата компанией в 2013 г., а до конца 2014 года поднять первый опытный Ан-178 в небо.



    Вертолет Ка-50 «Черная акула»Хищный, узкий фюзеляж маскирует значительные размеры боевой машины. Вертолет имеет высоту 4,9 метра, его длина с учетом винтов 15,9 метра. Винты имеют диаметр 14,5 метра. «Хребет» вертолета образует собой несущая балка шириной и высотой один метр. На эту балку, крепкую как конструкция моста, навешиваются двигатели. Интересно отметить, что целых тридцать минут двигатель может работать вообще без масла.


    Пе-8 самолет Сталина

    Реклама
    Даты авиации
    Сегодня: среда 21 декабря 2016

    Счетчик посещений
    Понедельник257
    Вторник258
    Среда127
    Четверг223
    Пятница211
    Суббота174
    Воскресенье227

    Всего хитов:2620
    Было всего:46942
    Рекорд:307
    Почтовая рассылка
    ГлавнаяО компанииИКАОИАТАКонтакты
    © Авиационная аналитическая компания «Авиас»
    Rambler's Top100