В гражданской авиации на глобальном уровне по затратам на исследования и разработки лидируют четыре крупнейших компании – Boeing, Airbus, Embraer и Bombardier. Именно они генерируют основное число инноваций, и определяют параметры «самолета будущего».
Статьи
Интересное

Современный истребитель Сразу после того, как люди научились летать, они стали использовать летательные аппараты для ведения боевых действий. И всем сразу стало понятно, что тот кто имеет преимущество в небе, и намного больше шансов выиграть любую войну, - так гонка вооружений добралась и до неба. Еще начиная со времен первой мировой войны, все развитые страны ведут гонку в разработке военных самолетов.


Над Донбассом сбили два военных самолета Над Донбассом были сбиты два украинские военные самолеты Су-25. Пилоты успели катапультироваться. Представители украинской армии утверждают, что самолеты были сбиты ракетами земля-воздух в районе населенного пункта Саур-Могила в Донецкой области на границе с Россией. В свою очередь, присутствующий на месте журналист одного из украинских телеканалов, говорит, что одна из машин выполняла боевую задачу в районе Лисичанска в Луганской области.


Бомбежка Барановичей 15 сентября 1939 Вторая мировая война пришла на белорусскую землицу не 22 июня 1941г, а на два года раньше, когда. Третий Рейх и СССР делили Центральную Европу. Пишет Руслан Ревяко.








Немецкие историки назвали точное число жертв бомбардировки ДрезденаВ результате бомбардировки Дрездена авиацией союзников в феврале 1945 года погибло около 25 тысяч человек. К такому выводу после шести лет работы пришла комиссия немецких историков, созданная в 2004 году по требованию городских властей. Официальный доклад комиссии был представлен в среду, 17 марта. По словам главы комиссии Рольф - Дитер Мюллера, историки могут достоверно подтвердить гибель 18 тысяч человек.


B-2 Spirit - самый дорогой в мире бомбардировщикB-2 Spirit - самый дорогостоящий многоцелевой бомбардировщик в мире. Хотя он, не только бомбардировщик, но и просто самолет. В 1997 году это чудо инженерной техники стоило 2 млрд долларов. А если учесть инфляцию, то сейчас B-2 Spirit стоил бы просто фантастические 10000000000 зеленых. И бомбардировщик на все сто процентов оправдывает свою самую высокую цену. Его главное предназначение - прорыв ПВО противника.


Бомбардировщик ТУ-2 как украшение Троещины На киевской окраине действует настоящий "троещинский Голливуд" - большая киностудия FILM.UA. Здесь снято немало известных фильмов, сериалов, телепрограмм. Киношники имеют немало уникальных коллекций международного исторического значения. А у жителей массива киностудия ассоциируется прежде всего с макетом самолета ТУ-2 в реальном размере.


Фотогалерея
Ассамблея ИКАО
Все фото »
Партнеры
Календарь новостей
«    Декабрь 2016    »
ПнВтСрЧтПтСбВс
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
 

Техническое описание ударного самолета Т-4


Аэродинамическая компоновка

Аэродинамическая схема самолета Т-4 представляет собой «бесхвостку» с передним горизонтальным оперением. Фюзеляж - тело большого удлинения, несущее переднее горизонтальное и хвостовое вертикальное оперения и имеет отклоняющуюся носовую часть. Шасси самолета выполнено по трехстоечной схеме с носовой стойкой. Силовая установка включала четыре двигателя РД36-41, размещенных в ряд в гондоле под крылом - «пакетная компоновка». Такая компоновка обеспечивала снижение аэродинамического сопротивления самолета и позволяла использовать положительную интерференцию между мотогондолой и крылом и достичь более высоких значений величин аэродинамического качества. На режимах взлета и посадки переднее горизонтальное оперение работало совместно с элевонами. На остальных режимах переднее горизонтальное оперение служило для продольной балансировки самолета. Самолет Т-4 обладал высокими сверхзвуковыми и дозвуковыми характеристиками, которые были достигнуты благодаря колоссальному объему аэродинамических исследований на этапе разработки. Большое количество работ было проведено при выборе оптимальной формы крыла будущего самолета. В ходе исследований подобрана такая форма крыла в плане, которая позволяла достичь наименьшего смещения фокуса машины при изменении режима полета с дозвукового на сверхзвуковой. Параллельно проводились исследования различных профилировок крыла и подбор их для самолета Т-4. Наиболее удовлетворял требованиям остроносый профиль У5. При имеющейся относительной толщине 2,74%, он обладал минимальным сопротивлением на сверхзвуке. Для достижения требуемых характеристик на дозвуковых режимах был введен отгиб носка крыла. Известно, что при переходе от дозвука к сверхзвуку фокус самолета резко смещается назад от центра тяжести (и наоборот), при этом возникает проблема балансировки ЛА. Путем подбора профиля крыла удалось уменьшить потери на балансировку. Прим. автора. качества, по сравнению с обычным неотогнутым крылом, приблизительно на единицу, и существенно улучшить летно-технические характеристики самолета на дозвуковых режимах полета. Данные по отгибающемуся носку крыла были получены после исследований деформации срединной поверхности и обтекания крыла. На основании полученных положительных результатов в 1969 г. Павел Осипович Сухой совместно с Наумом Семеновичем Черняковым приняли решение переделать носовую часть крыла на практически уже готовом самолете. При малых углах отклонения флаперонов, порядка 5 градусов, можно поднять максимальное аэродинамическое качество, которое в свою очередь влияет при полете на дальность. Этот режим был также введен на строящийся самолет. Флапероны на Т-4 использовались не только для повышения аэродинамического качества, они также служили как органы управления поперечного и продольного каналов, балансировки и одновременно зависания. Зависание было новым элементом в управлении самолетом, которое повышало его аэродинамические качества при одновременном выполнении всех остальных функций управления. Отдельной темой при выборе компоновки крыла Т-4 была работа по отклоняемым законцовкам. Отклонение законцовок крыла вниз влияло на характеристики путевой устойчивости и повышало его упругие свойства. Но из-за тонкого профиля крыла самолета Т-4 отклоняемые законцовки установлены не были. Для уменьшения сопротивления самолета в трансзвуковой области и при полете с числом М>1 при формировании геометрических обводов самолета использовался «график площадей» поперечных сечений самолета. Большое значение при создании аэродинамической компоновки «сотки» было уделено вопросам тряски самолета.

Технологическое членение самолета

Технологическое членение самолета Т-4 позволяет вести сборку самолета при серийном производстве широким фронтом и способствует сокращению цикла изготовления самолета. Деление самолета на агрегаты, отсеки и панели позволяет максимально механизировать сверлильно-зенковальные и клепочные работы. В связи с увеличением доли титановых и высокопрочных стальных сплавов в конструкции самолета состав технологических процессов по его изготовлению значительно отличался от традиционных, что увеличивало объем сварочных работ. В свою очередь агрегат-фюзеляж делился на следующие технологические отсеки: отклоняемая носовая часть фюзеляжа, кабинный отсек, закабинный (приборный) отсек, отсек центрального топливного бака, хвостовой отсек и отсек тормозного парашюта. Крыло состояло из центральной части, двух консолей с механизацией задней кромки, левой и правой передних частей крыла(наплывов). Гондола двигателей состояла из передней части с клином воздухозаборника, створками подпитки, противопомпажными створками, регулируемыми панелями воздухозаборника, нижнего обтекателя, центральной части с топливным баком, конструкций воздушных каналов и хвостовой части гондолы со створками люков на ее нижней поверхности, обеспечивающими замену и эксплуатацию двигателей. Вертикальное оперение состояло из центральной части, законцовки, форкиля и руля направления.

Компоновка и конструкция фюзеляжа

Фюзеляж самолета круглого сечения был выполнен по полумонококовой схеме. Герметизация отсеков оборудования и кабины осуществлялась герметиком по заклепочным и болтовым швам. Технологические фланцевые стыки герметизировались термостойкими прокладками. Поперечный набор фюзеляжа был выполнен из типовых и силовых стеночных и арочных шпангоутов. Типовые шпангоуты состояли из профилей Z-образного сечения из титановых сплавов. Силовой шпангоут стенки кабины имел одностеночную конструкцию. Шпангоуты, являющиеся стенками герметичных отсеков, также составляли одностеночную конструкцию с подкрепляющим силовым набором. Длина приборного отсека составляла 6746 мм. Поперечный набор отсека состоял из 22 типовых промежуточных шпангоутов с шагом между ними равным 300 мм. По бортам приборного отсека на нескольких уровнях размещались блоки комплексов радиоэлектронного оборудования, а также блоки электросистемы самолета. Большинство блоков было сгруппировано в отдельные модульные одно-, двух-, трехэтажные этажерки, позволяющие резко сократить установочный вес радиоэлектронного оборудования и объем, который оно занимало на самолете. Кроме того, установка блоков в модульные этажерки позволила централизованно с меньшими, в том числе и весовыми потерями, подвести к блокам охлаждающий их воздух из системы кондиционирования, а также уменьшить длину жгутов, связывающих между собой блоки оборудования. По всей длине приборного отсека по его центру был расположен «коридор», обеспечивающий подход к блокам при их эксплуатации и замене. В верхней части отсека по оси симметрии проходили тросы управления рулем направления. Внизу по бортам размещались агрегаты и трубопроводы системы кондиционирования. В приборном отсеке были также расположены газификаторы кислородной системы. Большая часть жгутов, проложенных вдоль отсека, была расположена по бортам в нижней части отсека под стеллажами, на которых устанавливалась большая часть модульных этажерок оборудования. На «потолке» коридора были установлены блоки электросистемы госопознавания, связи, самолетного ответчика, бортовой цифровой вычислительной станции, коммутации, управления силовой установкой, спасаемого самописца, автоматизированной системы контроля, аппаратуры управления ракетами, антиюзовой автоматики и управления воздухозаборниками. Здесь же располагались части блоков радиолокационной станции, астроинерциальной системы и радиотехнических систем ближней и дальней навигации. Технологические отсеки фюзеляжа - 4Ф, 5Ф и 6Ф - топливные баки-отсеки. Отсек 4Ф имел круглое сечение постоянного диаметра 2000 мм, передняя стенка отсека представляла собой сферическую форму для восприятия избыточного давления в баке. Длина отсека 4Ф - 9750 мм. Отсек 5Ф - надкессонный, с плоским днищем, под отсеком 5Ф располагался кессон крыла. Поперечные сечения отсека 6Ф, аналогичны поперечным сечениям отсека 5Ф, но имели меньшие геометрические сечения. Топливные баки были соединены системой трубопроводов. В гермошпангоутах топливных баков - отсеков имелись люки с герметичными крышками для доступа внутрь баков. Над баками был расположен гаргрот, в форме полуцилиндра. В гаргроте располагались основные транзитные коммуникации самолета: жгуты электросистемы, радиоэлектронных систем, тросы управления рулем направления, трубопроводы топливной системы.

Конструкция и компоновка крыла

Крыло самолета Т-4 имело треугольную в плане форму с изломом по передней кромке. Профиль крыла - симметричный с относительной толщиной 2,7%. Крыло самолета технологически делилось на две части:
- центральную (центроплан);
- консоли крыла.
Центральная часть крыла имела многобалочную конструкцию с часто расположенным поперечным набором (нервюрами) и панелями, представляющими собой обшивку, подкрепленную стрингерами. Центральная часть крыла делилась на:
- герметичную переднюю, в которой был расположен топливный бак-отсек;
- негерметичную заднюю.
По периметру топливного отсека были предусмотрены люки для осмотра и ремонта при обнаружении течи. Стык центральной части крыла с консолями осуществлялся по узлам силовых балок болтами, по панелям: по верхней поверхности с помощью гребенки, по нижней - с помощью силовой ленты. На верхней поверхности центральной части крыла располагались узлы стыковки ее с фюзеляжем, на нижней поверхности - узлы крепления главных опор шасси и узлы крепления гондол двигателей. Основные силовые продольные балки имели двутавровые сечения и были выполнены из стали. Промежуточные продольные балки представляли из себя ферменную конструкцию с поясами двутаврового сечения. Верхние и нижние панели топливного отсека были выполнены из стали ВНС-2 и представляли собой обшивку, подкрепленную стрингерами. Задняя часть центроплана была негерметична. Нижняя поверхность негерметичного отсека полировалась для повышения ее способности отражать тепло от работающих двигателей. Каждая консоль крыла состояла из основного отсека и носка и представляла собой сварную конструкцию. Элементы конструкции консолей крыла были выполнены из титановых сплавов. В консолях крыла топливных баков не было. В конструкции консоли были применены силовые балки двух типов:
- цельноштампованные, двутаврового сечения;
- сборные с поясами таврового сечения. Несиловые балки были выполнены из поясов
таврового сечения и стенок.
Верхние и нижние панели отсека состояли из обшивки, подкрепленной часто расположенными стрингерами. Соединение стрингеров с обшивкой производилось контактной электросваркой. Нервюры консолей были выполнены: цельно-штампованными, арочными и стеночными. Носок консоли состоял из двух панелей, подкрепленных гофром, и набора облеченных нервюр. Левый и правый элевоны консолей состояли каждый из трех секций, отклоняющихся вверх на угол 25° и вниз на угол 10°. Каждая секция была шарнирно подвешена в двух точках и отклонялась с помощью гидроцилиндров. Продольный набор элевонов состоял из переднего лонжерона и двух стенок, поперечный - из часто расположенных нервюр. Исследования, проведенные в ОКБ П.О. Сухого, показали, что наиболее рациональной конструктивно-силовой схемой тонкого сверхзвукового крыла большой стреловидности, обеспечивающей местную жесткость, являлась многостеночная кессонная конструкция, воспринимающая изгиб, кручение и местные нагрузки. Принятая и реализованная конструктивно-силовая схема крыла обеспечивала прочность и хорошую весовую отдачу при нормальной и повышенной температурах. Конструкция и компоновка вертикального оперения Руль направления по высоте был разделен на две части. Управление рулем направления осуществлялось гидроцилиндрами, установленными внутри киля. Гидроцилиндры крепились на балках киля и нервюрах руля направления. По своей конструктивно-силовой схеме киль представлял собой многолонжеронную конструкцию. Стыковка киля с фюзеляжем осуществлялась по 9 лонжеронам. Лонжероны киля имели двутавровое сечение и изготавливались целиком из стали горячей штамповкой. Некоторые лонжероны состояли из двух частей: нижней, изготавливавшейся из стали горячей штамповкой и верхней, представлявшей собой сварную конструкцию из полок и стенок. Верхняя и нижняя части руля направления имели одинаковую конструкцию. Каркас руля направления состоял из лонжерона, стенок, нервюр и носков.

Компоновка и конструкция переднего горизонтального оперения

Переднее горизонтальное оперение (ПГО) служило для оптимальной продольной балансировки самолета на взлете и посадке и для балансировки Т-4 в горизонтальном полете при нулевом отклонении элевонов. Управление ПГО осуществлялось с помощью дублированного электропривода. Профиль переднего горизонтального оперения - двойная трапеция. Каждая консоль состояла из передней, средней и хвостовой частей. Средняя часть, в свою очередь, состояла из верхней и нижней панелей, лонжерона, нервюр, задней и передней стенок.

Взлетно-посадочные устройства самолета

Передняя стойка шасси имела рычажно-подвешенные колеса со стартовыми тормозами. Механизм управления служил также демпфером «шимми». Для уменьшения объемов, занимаемых главными опорами в убранном положении, была применена система уборки с разворотом на 90° и запрокидыванием на 70° тележек шасси. Тормозная система главных опор шасси имела основное, аварийное и стартовое торможение от гидросистемы. Для уменьшения длины пробега на самолете была установлена парашютно-тормозная система, состоявшая из четырех парашютов общей площадью 100 м2. Система применялась на скоростях до 280 км/ч и подтвердила свою эффективность.

Конструкция гондолы двигателей самолета

Гондола под установку четырех двигателей, была подвешена к фюзеляжу и крылу. Гондола двигателей конструктивно делилась на две части: - переднюю, где были расположены воздухозаборники , отсек оборудования, расходный б а к и ниши передней и главных опор шасси; - хвостовую, где располагались четыре двигателя. В технологическом плане передняя часть гондолы делилась на следующие технологические единицы: рассекатель, каналы воздухозаборников, створки каналов, шпангоуты, верхние и боковые панели, узлы крепления главных опор шасси. Хвостовая часть гондолы в технологическом плане делилась на панели с люками для установки двигателей, боковые панели, противопожарные перегородки, узлы крепления двигателей. Соединение гондолы с фюзеляжем и крылом осуществлялось продольными силовыми стенками, шпангоутами стеночного типа и контурными угольниками. Гондола начиналась двумя изолированными друг от друга воздухозаборниками, переходящими в два воздушных крыла каждый. Входные отверстия воздухозаборников прямоугольного сечения были разделены вертикальным клином. Для обеспечения устойчивой работы двигателей на всех режимах площадь входной части каждого воздухозаборника регулировалась подвижными панелями. Каждый из воздушных каналов перед входом в отсек двигателей, находящийся в хвостовой части гондолы, разветвлялся на два рукава круглого сечения. Внешняя часть гондолы состояла из верхней, нижней и боковых панелей. Каждая панель была выполнена из обшивки, подкрепленной продольным (стрингеры П-образного сечения) и поперечным (шпангоуты) набором. В отсеке двигателей был выполнен только поперечный набор - шпангоуты. Вдоль нижней панели гондолы были установлены два лонжерона, переходившие перед отсеком двигателей в один. На верхней панели гондолы и верхней части воздушного канала были расположены створки подпитки. В нижней части гондолы - четыре противопомпажные створки. К верхней части воздухозаборника и воздушного канала примыкал канал охлаждения двигателей. Проход воздуха через створки подпитки, расположенные на верхней панели гондолы, осуществлялся через каналы охлаждения двигателей. В носовой части гондолы между регулируемыми вертикальными панелями была расположена ниша передней опоры шасси с узлами ее установки. Узлы установки передней опоры шасси были расположены на боковых стенках ниши, которые одновременно являлись стенками подвески гондолы к фюзеляжу. В носовой нижней части гондолы, имелся обтекатель, заканчивавшийся отверстием для выхода воздуха из системы слива пограничного слоя воздухозаборников. В средней части гондолы был расположен расходный бак топливной системы. Между боковыми панелями гондолы и воздушными каналами находились ниши главных опор шасси. Крепление двигателей в мотоотсеке гондолы к нижней части крыла и к продольной силовой стенке, идущей по оси симметрии гондолы, осуществлялось с помощью тяг и рам. Установка двигателей производилась при снятых люках нижней панели гондолы. Конструкция гондолы - сварная. Материал стенок, обшивки, стрингеров, шпангоутов - титановые сплавы и сталь, лонжеронов и узлов крепления передней опоры шасси - сталь. Плоские стенки воздухозаборника и воздушного канала были выполнены из типовых фрезерованных панелей, к ребрам которых были приварены профили. На участке расходного бака и по нижней поверхности гондолы конструкция воздушного канала была двухстенной, в остальной части воздушный канал состоял из обшивки и профилей, выполненных их титанового сплава.

Отклоняемая носовая часть фюзеляжа

Отклоняемая носовая часть фюзеляжа обеспечивала необходимый обзор при взлете, посадке и при полете до скорости 700 км/ч. Опускание и подъем носовой части производился винтовой парой с помощью редуктора и двух гидромоторов. Время подъема и опускания носовой части фюзеляжа на земле и в полете составляло не более 15 секунд. На время испытаний для улучшения обзора в кабине летчика при поднятой носовой части фюзеляжа был установлен перископ, который мог использоваться до скорости 600 км/ч.

Система управления

Экспериментальный самолет «101» был оборудован двумя системами управления:
- электрогидравлической дистанционной;
- резервной механической.
Система СДУ обеспечивала необходимые характеристики устойчивости и управляемости самолета, неустойчивого в путевом канале и близкого к нейтральному в продольном канале. Принципы проектирования системы СДУ: 4-кратное резервирование, методы контроля и способы повышения статической и динамической устойчивости средствами автоматики. Для получения заданных характеристик устойчивости и управляемости во всем диапазоне режимов полета дистанционная система управления имела три режима работы: демпферный, совместно с механической системой управления, взлетно-посадочный и маршрутный. Переднее горизонтальное оперение, предназначенное для продольной балансировки самолета, управлялось дублированным электромеханическим приводом посредством командных электрических сигналов, задаваемых летчиком. Тщательная отработка и подготовка системы дистанционного управления к полетам, надежность ее работы при выполнении скоростных рулежек, хорошие характеристики устойчивости и управляемости самолета с СДУ дали возможность проведения первого полета с использованием дистанционной системы управления. Все полеты опытный самолет «101» совершило помощью дистанционной системы управления, включаемой со старта. Материалы испытаний и отзывы летчика-испытателя о пилотировании самолета и работе дистанционной системе управления позволяют сделать заключение, что структура системы, законы управления и законы коррекции передаточных чисел СДУ были выбраны правильно и обеспечивали хорошую устойчивость и управляемость самолета. Индикация состояния системы СДУ отображалась на пульте СДУ и табло аварийных сигналов. Перед установкой на самолет аппаратура системы СДУ прошла отработку и регулировку на специальном гидромеханическом стенде. Было проведено полунатурное моделирование динамики полета с дистанционной и механической системами управления, а также проверка на отказобезопасность при моделировании вероятных отказов. При подготовке самолета к полетам были проведены частотные испытания СДУ, сняты динамические и кинематические характеристики, характеристики загрузочных устройств и трения проводки управления. Проводилась отработка и проверка систем управления с работающими двигателями на стоянке и на первых рулежках самолета. По результатам наземных испытаний и первых рулежек самолета было определено, что дистанционная система управления вследствие особенностей схемы самолета, конструкции рулевых приводов и поста управления (ручка управления вместо штурвала) имела лучшие характеристики трения и была удобной и надежной. В ходе летных испытаний система СДУ была отработана в демпферном режиме (совместно с механической системой управления), в режимах управления «взлет-посадка», «маршрут». Параллельно, были оценены характеристики устойчивости и управляемости самолета с дистанционной и механической системами управления. Материалы испытаний показали, что переключение режимов работы СДУ и переключение СДУ и механической системы управления (МСУ) выполнялись просто и практически без рывков системы управления. Система дистанционного управления СДУ-4 обеспечивала управление рулевыми поверхностями самолета на всех этапах полета по сигналам, пропорциональным перемещениям ручки управления и педалей. Для придания «чувства управления» в систему СДУ-4 были введены пружинные механизмы загрузки. С целью повышения живучести самолета в аварийных ситуациях, возникающих вследствие пожара или механических повреждений, блоки вычислительной аппаратуры СДУ были разнесены по двум бортам. На одном борту размещались блоки 1 -го и 2-го резервных каналов, на другом - 3-го и 4-го.

Силовая установка

Сопло обеспечивало высокую эффективную тягу во всем диапазоне скоростей полета. Каждая пара двигателей (правая и левая), установленных на самолете, питалась воздухом от одного, общего для них воздухозаборника, который разделялся в дозвуковой части перегородкой, образующей два канала. Воздухозаборники двигателей были восьмискачковые, смешанного сжатия. Для обеспечения оптимальных условий совместной работы воздухозаборника и двигателей каждый воздухозаборник имел свою автономную систему автоматического управления положением регулирующей панели и створки перепуска в зависимости от изменения режимов полета и параметров работы двигателей. Для самолета была разработана система перепуска воздуха из пограничного слоя, сливаемого с нижней поверхности крыла перед воздухозаборниками, в тракт охлаждения двигателей.

Система автоматического управления тягой двигателей

Система использовалась на режимах снижения самолета и при заходе на посадку. Большой объем работ, проделанный по математическому и полунатурному моделированию, позволил применить систему, начиная с первого полета самолета. Отличительной особенностью примененного автомата являлось командное воздействие на автоматизированную систему управления двигателями. Для повышения надежности система автоматического управления была дублирована и снабжена встроенным контролем, обеспечивавшим подключение резервного подканала при отказах аппаратуры и цепей питания. Стабилизация заданной летчиком скорости с помощью системы автоматического управления осуществлялась при следующих воздействиях:
- изменение конфигурации самолета при отклонении носовой части фюзеляжа и выпуске шасси;
- переход из набора высоты в горизонтальный полет и из горизонтального полета в снижение;
- разворот самолета;
- изменение заданной скорости полета на глиссаде планирования.
Система АСДУ-ЗОА состояла из двух каналов, передающих движение от рычага газоуправления, и аварийного канала, управление которым осуществлялось «от кнопок». Управление систем могло осуществляться как вручную, так и автоматически по команде от системы автоматического управления тягой. В процессе всех наземных и летных испытаний система осуществляла устойчивое управление двигателями на бесфорсажных и форсажных режимах. При наземной отработке двигателей с целью определения их помехоустойчивости были проведены испытания четырех систем АСДУ-ЗОА, и какого-либо влияния на них внешних электромагнитных полей, а также влияния изменения напряжения питания на систему и элементы ее внутреннего контроля не было обнаружено. АСДУ-ЗОА устойчиво работала на всех режимах работы двигателей.

Топливные баки самолетов «101», «102», « 103 »

Топливо в самолете «101» размещалось в 4 топливных баках: 1Ц, 2Ф, ЗФ и 2МГ. Крыльевые топливные баки на самолете «101» залиты не были. Суммарный запас топлива во внутренних баках самолета составлял 46550 кг. Подвесные топливные баки на первом самолете установлены не были. На втором опытном самолете «102» топливо дополнительно было размещено в баке № ЗК. Суммарный запас топлива на самолете составил 58350 кг. На самолете «102» планировалось применить два подвесных топливных бака с запасом топлива, равным 4435 кг. Масса конструкции такого подвесного бака с невырабатываемым остатком топлива должна была составлять 565 кг. На третьем серийном самолете планировалось увеличить запас топлива во внутренних баках до 69250 кг. По сравнению со вторым опытным самолетом, увеличивался запас топлива в крыльевых баках, и были залиты баки в передней части крыла. На самолете «103» планировалось использовать такие же, как и на «102» подвесные топливные баки. Суммарный запас топлива, который одновременно поднимал самолет, должен был составлять 78070 кг.

Система нейтрального газа

Для самолета Т-4 впервые в Советском Союзе была разработана система нейтрального газа (НГ) на жидком азоте, что позволило значительно уменьшить удельный вес этой системы (до 3-4 кг/м3 топлива). Наддув топливных баков в системе нейтрального газа производился от газификаторов жидкого азота, установленных в мотогондоле самолета. Работоспособность и надежность топливной системы и системы нейтрального газа была проверена на специальном стенде «СТН-100». При испытаниях перечисленные системы работали без замечаний, обеспечивая нормальную работу двигателей на всех режимах. Для сокращения объема нейтрального газа, размещаемого в газификаторах применялся способ обогащения свободного от топлива объема баков нейтральным газом, выделяемым из топлива в процессе набора высоты (из-за уменьшения давления в топливных баках). Для этого был разработан способ замещения растворенного в топливе кислорода на азот перед заправкой - «газификация топлива».

  • Категория: Ударно-разведывательный самолет T-4
  • Просмотров: 2445
    Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
    Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
    Поиск по сайту
    Личный кабинет
    Актуально

    Ан-225 «Мрия» - самый большой в мире самолет Ан-225 «Мрия» - самый большой в мире самолет. Создал самолет киевский КБ имени Антонова. Этот уникальный самолет установил аж 240 мировых рекордов. Не несмотря на свой почтенный возраст и то, что существует лишь одна единица этого самолета, он все еще не уступает своим конкурентам. Если поступит заказ то будет достроен второй гигант, который готов лишь на 60-70%.


    Мировые авиакомпании приостанавливают рейсы в Израиль Полеты в Тель-Авив приостановили также польские авиалинии „LOT”. Авиакомпании из Европы и Соединенных Штатов Америки приостанавливают рейсы в Израиль. Причина - обострение израильско-палестинского конфликта. После того, как полтора километра от аэропорта „Бен Гурион” в Тель-Авиве упала ракета, Федеральная авиационная администрация США решила, что, как минимум, в течение суток свои рейсы в Израиль приостанавливают авиакомпании „Delta”, „United” и „US Airways”.


    Лондон: тысячи пассажиров улетели без багажа Тысячи пассажиров ждут за границей своих сумок и чемоданов, который потерялись во время вылета из Лондона. С четверга в лондонском аэропорту Heathrow наблюдается хаос с багажом. Тысячи пассажиров ждут за границей своих сумок и чемоданов, который потерялись во время вылета из Лондона. Дирекция аэропорта уверяет, что весь багаж будет найден.




    Капитан самолета не понял шуток...Шутки двух пассажиров стали причиной того, что пассажирский самолет был принудительно посажен парой британских истребителей. Шутки двух пассажиров стали причиной того, что пассажирский самолет был принудительно посажен парой британских истребителей. Лайнер с более чем 300 пассажирами и членами экипажа на борту направлялся из пакистанского Лахора в британский Манчестер.


    Польша закупает “Boeing 787 Dreamliner”Самолеты заказала польская авиакомпания LOT. Кстати, LOT является первыми в Европе авиалиниями, которые заказали эти современные авиалайнеры, сообщает газета “Rzeczpospolita”. “Boeing 787” ждут в Варшаве не только сотрудники польской авиакомпании и польские любители авиации, но также поклонники этого самолета в Европе. В интернете они объединяются в группы и покупают билеты на европейские трассы LOT, на которых будет летать “Dreamliner”.


    Из Минска в Гомель за час Еще до вылета предвзято отнесся к возможности попасть на самолете в Гомель.

    Скепсис был вызван возрастом самолетов АН - 24: последний экземпляр этой модели выпустили тридцать один год назад.

    Но, когда поднялись в воздух, понял, что возраст неопытному глазу пассажира замечается только по каким-то внешним деталям.


    Завод «Антонов» до конца года выпустит новый самолетГосударственное предприятие «Антонов» планирует до конца 2014 года завершить сборку первого опытного экземпляра нового самолета Ан-178 грузоподъемностью до 18 тонн. Сооружение опытного экземпляра нового Ан-178 грузоподъемностью до 18 т., который сменит на рынке Ан-12 начата компанией в 2013 г., а до конца 2014 года поднять первый опытный Ан-178 в небо.



    Вертолет Ка-50 «Черная акула»Хищный, узкий фюзеляж маскирует значительные размеры боевой машины. Вертолет имеет высоту 4,9 метра, его длина с учетом винтов 15,9 метра. Винты имеют диаметр 14,5 метра. «Хребет» вертолета образует собой несущая балка шириной и высотой один метр. На эту балку, крепкую как конструкция моста, навешиваются двигатели. Интересно отметить, что целых тридцать минут двигатель может работать вообще без масла.


    Пе-8 самолет Сталина

    Реклама
    Даты авиации
    Сегодня: среда 21 декабря 2016

    Счетчик посещений
    Понедельник257
    Вторник258
    Среда127
    Четверг223
    Пятница211
    Суббота174
    Воскресенье227

    Всего хитов:2668
    Было всего:46942
    Рекорд:307
    Почтовая рассылка
    ГлавнаяО компанииИКАОИАТАКонтакты
    © Авиационная аналитическая компания «Авиас»
    Rambler's Top100