В гражданской авиации на глобальном уровне по затратам на исследования и разработки лидируют четыре крупнейших компании – Boeing, Airbus, Embraer и Bombardier. Именно они генерируют основное число инноваций, и определяют параметры «самолета будущего».
Статьи
Интересное

Современный истребитель Сразу после того, как люди научились летать, они стали использовать летательные аппараты для ведения боевых действий. И всем сразу стало понятно, что тот кто имеет преимущество в небе, и намного больше шансов выиграть любую войну, - так гонка вооружений добралась и до неба. Еще начиная со времен первой мировой войны, все развитые страны ведут гонку в разработке военных самолетов.


Над Донбассом сбили два военных самолета Над Донбассом были сбиты два украинские военные самолеты Су-25. Пилоты успели катапультироваться. Представители украинской армии утверждают, что самолеты были сбиты ракетами земля-воздух в районе населенного пункта Саур-Могила в Донецкой области на границе с Россией. В свою очередь, присутствующий на месте журналист одного из украинских телеканалов, говорит, что одна из машин выполняла боевую задачу в районе Лисичанска в Луганской области.


Бомбежка Барановичей 15 сентября 1939 Вторая мировая война пришла на белорусскую землицу не 22 июня 1941г, а на два года раньше, когда. Третий Рейх и СССР делили Центральную Европу. Пишет Руслан Ревяко.








Немецкие историки назвали точное число жертв бомбардировки ДрезденаВ результате бомбардировки Дрездена авиацией союзников в феврале 1945 года погибло около 25 тысяч человек. К такому выводу после шести лет работы пришла комиссия немецких историков, созданная в 2004 году по требованию городских властей. Официальный доклад комиссии был представлен в среду, 17 марта. По словам главы комиссии Рольф - Дитер Мюллера, историки могут достоверно подтвердить гибель 18 тысяч человек.


B-2 Spirit - самый дорогой в мире бомбардировщикB-2 Spirit - самый дорогостоящий многоцелевой бомбардировщик в мире. Хотя он, не только бомбардировщик, но и просто самолет. В 1997 году это чудо инженерной техники стоило 2 млрд долларов. А если учесть инфляцию, то сейчас B-2 Spirit стоил бы просто фантастические 10000000000 зеленых. И бомбардировщик на все сто процентов оправдывает свою самую высокую цену. Его главное предназначение - прорыв ПВО противника.


Бомбардировщик ТУ-2 как украшение Троещины На киевской окраине действует настоящий "троещинский Голливуд" - большая киностудия FILM.UA. Здесь снято немало известных фильмов, сериалов, телепрограмм. Киношники имеют немало уникальных коллекций международного исторического значения. А у жителей массива киностудия ассоциируется прежде всего с макетом самолета ТУ-2 в реальном размере.


Фотогалерея
Ассамблея ИКАО
Все фото »
Партнеры
Календарь новостей
«    Декабрь 2016    »
ПнВтСрЧтПтСбВс
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
 

Управление сверхзвуковым самолетом


Во время второй мировой войны и в первые годы после ее окончания пилоты и конструкторы столкнулись с рядом аномалий в устойчивости и управляемости самых быстрых самолетов-истребителей с поршневыми двигателями и первых реактивных самолетов. Позднее после проведения обширных исследований, удалось так усовершенствовать форму околозвукового, а затем и сверхзвукового самолета, что изменения устойчивости и управляемости при волновом кризисе стали проявляться менее резко, а потом и вовсе едва заметно. Эти аномалии связаны главным образом с характером обтекания при околозвуковых скоростях. Такому обтекай и сопутствовали среди прочих следующие характерные явления:
1. Наиболее часто происходило затягивание в пикирование. В таких случаях после достижения определенной скорости полета при неподвижной ручке управления самолет начинал самопроизвольно наклоняться носом вниз, а скорость и угол пикирования быстро увеличивались. Пытаясь противодействовать этому, пилот прикладывал к ручке исключительно большое усилие, наклоняя ее на себя. Однако иногда самолет не реагировал на действия пилота и выходил из пикирования самопроизвольно на малой высоте либо разбивался,. Причины, вызывающие это явление, были выяснены только в последующие годы Исследования показали, что при достижении околозвуковых скоростей в областях наибольшего разрежения на поверхностях крыла и оперения возникает сверхзвуковое обтекание, изменяющее характер распределения давления вдоль хорды профиля. При этом центр давления (ц.д) профиля смещается назад, что приводит к соответствующему сдвигу назад ц.д. всего самолета; это в свою очередь (при постоянном положении центра тяжести самолета ц.т,) вызывает увеличение момента на пикирование. В самолетах дозвуковых аэродинамических форм, в которых планер винтомоторного самолета был приспособлен для установки реактивного двигателя, явление затягивания в пикирование было реальной опасностью, поскольку у прямого крыла с довольно большой относительной то л шиной профиля ц.д. сильнее смещается назад при переходе от дозвуковых скоростей полета к сверхзвуковым. Ввиду этого для первых реактивных самолетов устанавливалось ограничение на максимально допустимое полетное число Маха, всегда меньшее критического значения зменение продольного момента при переходе самолета через звуковой барьер всегда значительно; только в результате смещения назад ц.д. происходит 3-4-кратное увеличение момента на пикирование. В самолетах дозвуковых аэродинамических форм с горизонтальным оперением, состоящим из стабилизатора и руля высоты, необходимый для балансировки самолета момент можно было создать лишь с помощью руля. В то же время явление затягивания в пикирование сопровождалось значительным снижением эффективности управления при околозвуковых скоростях полета. Это не позволяло компенсировать резко возрастающий продольный момент, особенно в диапазоне чисел Маха 0,8-1,0.
2. При полетах с дозвуковыми скоростями отклонение руля, расположенного в задней части профиля, приводит к изменению распределения давления по всему профилю (т.е. на всей поверхности, например, оперения), тогда как при возрастании М выше М1р это изменение охватывает все меньшую область ввиду перемещения сверхзвукового скачка уплотнения в направлении задней кромки. При М > 1 отклонение руля вызывает изменение распределения давления уже только на нем самом, из-за чего эффективность руля в сверхзвуковом полете всегда ниже, чем в полете с дозвуковой скоростью.
3. При околозвуковых скоростях полета руль настолько охвачен областью возмущений, вызванных отрывом, что его отклонения (в большом диапазоне углов) не в состоянии изменить направления потока. Это означает, что эффективность» например, руля высоты дополнительно снижается, а в некотором диапазоне углов отклонения утрачивается полностью. Это явление названо аэродинамической блокировкой рулей. Руль вновь приобретает нормальную действенность только тогда, когда все обтекание становится сверхзвуковым.
4, Большое значение для устойчивости самолета и характера переходных процессов имеют демпфирующие моменты, которые появляются во время поворота самолета относительно соответствующих осей. Эти моменты возникают вследствие существования относительной скорости потока, противоположной направлению поворота. Относительная скорость потока вызывает изменение углов атаки профилей и приводит к возникновению дополнительных аэродинамических сил, моменты которых относительно центра тяжести самолета противодействуют повороту. Результирующий демпфирующий момент представляет собой сумму моментов от оперения, фюзеляжа и крыла. С учетом несущих поверхностей наибольший момент возникает, очевидно, относительно поперечной оси, а его значение зависит от формы и величины крыла, фюзеляжа и горизонтального оперения, т.е. от принятой аэродинамической схемы и компоновки самолета, особенно от формы крыла и наличия горизонтального оперения.
5. На продольное демпфирование значительное влияние оказывает скос потока в области горизонтального оперения. Возникновение скоса потока объясняется тем, что вихревое течение, индуцируемое концами крыла, имеет составляющую скорости, направленную вниз, которая, суммируясь со скоростью невозмущенного потока, изменяет угол атаки горизонтального оперения. Величина этого изменения зависит от угла атаки крыла (или коэффициента подъемной силы), числа Маха, а также от формы крыла. Скос потока вблизи горизонтального оперения, расположенного за крылом, может оказывать существенное влияние на продольную устойчивость самолета, поскольку сильнее всего он проявляется при околозвуковых скоростях, когда центр давления перемещается назад. Особенно неблагоприятен скос потока для самолетов с прямым крылом, у которых в результате интерференции крыла и фюзеляжа кризисные явления возникают главным образом в корневой части крыла. Они приводят к уменьшению скоса потока, а тем самым к уменьшению направленной вниз уравновешивающей силы оперения и появлению дополнительного момента на пикирование, который возникает одновременно с другим дополнительным моментом-от перемещения ц.д. самолета. В отличие от прямого крыла у стреловидного кризисные явления возникают прежде всего на концах. Это вызывает такое изменение распределения давления вдоль размаха, что скос потока вблизи горизонтального оперения возрастает, а устойчивость самолета уменьшается, В самолетах со стреловидным либо треугольным крылом при околозвуковых скоростях это совпадает с уменьшением подъемной силы на концах крыла. Поскольку концы таких крыльев находятся за центром тяжести самолета, уменьшение ка них подъемной силы приводит к возрастанию момента на кабрирование, что в совокупности с увеличением этого же момента вследствие скоса потока может привести к неустойчивости на некоторых режимах полета, особенно при больших значениях коэффициента подъемной силы. При увеличении сверхзвуковой скорости полета скос потока вблизи горизонтального оперения постепенно уменьшается, так как по мере разгона самолета углы раствора конусов возмущений уменьшаются. В зависимости от соотношения размахов крыла и оперения, а также от значения числа Маха скос потока за крылом может вообще не оказывать влияния на работу горизонтального оперения, если это оперение расположено за конусами возмущений.
6. Возникновение скачков уплотнения на крыле в области элеронов, а также интенсивный срыв потока за элеронами при околозвуковых и сверхзвуковых скоростях полета могут снизить эффективность элеронов н даже вызвать их обратное действие, обусловленное чисто аэродинамическими причинами '. Например, отклонение элерона книзу может усугубить волновой кризис (отрыв потока) на верхней поверхности, что приведет к уменьшению подъемной силы крыла вместо требуемого увеличения ее. Отклонение элерона кверху на другом полукрыле может вызвать отрыв потока на его нижней поверхности, что приведет к нежелательному увеличению подъемной силы. В результате оказывается, что момент крена, создаваемый элеронами, противоположен требуемому.
7. Явление, аналогичное описанному выше, возникает также при управлении самолетом по курсу. При дозвуковой скорости полета после поворота руля направления, например, вправо самолет, осуществляя поворот, кренится в ту же сторону независимо от формы крыла. При полете с Мкр картина меняется: после отклонения руля вправо левое крыло выдвигается вперед и его эффективный угол стреловидности относительно потока уменьшается, в связи с чем снижается также Мкр, В результате волновой кризис раньше возникает на левом крыле и его подъемная сила уменьшается, вследствие чего самолет получает крен на левую сторону вместо правой. Этот эффект усугубляется еще и тем, что сила, возникшая на вертикальном оперении, после поворота руля направления воздействует на определенном плече относительно продольной оси самолета и, следовательно, создает момент, вызывающий дополнительный крен в направлении. Описанное явление особенно характерно для современных самолетов с вертикальным оперением большой площади и крыльями малого удлинения, которые имеют малый продольный момент инерции. Очевидно, что противоположная реакция самолета на отклонение руля направления может быть связана также со сжимаемостью воздуха и возникновением кризисных явлений при несимметричном обтекании правой и левой консолей крыла, а также со специфическими формами сверхзвуковых самолетов и их меньшим моментом инерции относительно продольной Осн. Эффект реверса руля направления может проявляться в диапазоне не только околозвуковых, но также и сверхзвуковых скоростей, особенно при М > 1,5 — 2,0.

Развитие аэродинамических систем управления

Большое число и разнообразие явлений, ведущих к ухудшению устойчивости и управляемости в диапазоне сверхкритических скоростей, а также отсутствие эффективных средств противодействия им в первых около- и сверхзвуковых самолетах сделали полеты очень сложными и потребовали от пилотов исключительно осторожного управления. Практическое использование таких самолетов было невозможным, так как выполнение полета требовало концентрации всего внимания пилота. Утрата эффективности управления в диапазоне сверхкритнческих скоростей - крайне опасное явление, требующее энергичного противодействия со стороны конструктора самолета. Если самолет имеет двигательную установку с достаточно большой тягой, то при разгоне он может относительно быстро преодолеть интервал околозвуковых скоростей, и поэтому некоторые из вышеописанных эффектов проявляются в течение такого короткого времени, что это не влияет на поведение самолета. Однако требование длительного полета современных самолетов на малой высоте с околозвуковыми скоростями вынуждает конструкторов разрабатывать различные аэродинамические и конструктивные способы обеспечения надлежащей управляемости во всем диапазоне эксплуатационных скоростей. Особенно стремятся к тому, чтобы снижение эффективности управления не совладало по времени с нарушениями устойчивости, связанными с волновым кризисом на крыле в диапазоне околозвуковых скоростей. В построенных до настоящего времени сверхзвуковых самолетах проблемы устойчивости разрешены различными способами, однако преимущественно посредством соответствующих комбинаций управляющих поверхностей: элеронов; элевонов; управляемого дифференциального стабилизатора; элеронов и рулей высоты, разметенных в хвостовых частях крыла; зависающих элеронов; интерценторов; рулей высоты и направления либо цельнопо воротного горизонтального и вертикального оперения, которое в самолетах вертикального взлета и посадки (как исключение, и в высотном самолете Х-15А) дополнено системой струйного (реактивного) управления. Для управления по тангажу и курсу в 6 самолетах использовано классическое горизонтальное оперение, состоящее из неподвижного стабилизатора и руля высоты; в 56-полностью поворотное горизонтальное оперение, в том числе в 17-дифференциальное (всего создано 62 самолета классической схемы); в 75-классическое одно-килевое оперение; в б-двухкилевое оперение; в 5-полностью поворотное однокилевое и в 2-новоротное двухкилевое. Приведенные данные показывают, что проблема управления самолетами разрешалась разными способами в зависимости от принятой общей концепции самолета, развития аэродинамики и имеющегося опыта. В то же время возможности использования различных методов в целях получения требуемой устойчивости весьма ограничены. Помимо соответствующего взаимного расположения несущих поверхностей различной формы и площади, улучшения продольной устойчивости можно добиться только путем регулирования положения центра тяжести самолета посредством перекачки топлива из передней части фюзеляжа к хвостовой (либо наоборот), а улучшения устойчивости по курсу -посредством применения подфюзеляжных килей и аэродинамических направляющих. Топливная система, позволяющая изменять балансировку самолета в полете, использована в 4 самолетах, а подфюзеляжные кили в 26 (в том числе: в 15-одиночные, в 10 сдвоенные и в 1 строенные). Проблема малой маневренности первых сверхзвуковых самолетов как следствия недостаточной эффективности продольного управления с помощью руля высоты была разрешена путем использования цельноповоротного горизонтального оперения (управляемого стабилизатора). Такое оперение выполняется в виде моноблочной конструкции, поворачиваемой относительно поперечной оси и выполняющей функции как руля, так и стабилизатора. Оно не теряет эффективности при сверхзвуковом обтекании, поскольку не подвержено аэродинамической блокировке. Конструкция существенно упрощается в связи с возможностью избежать разделения горизонтального оперения на неподвижную и поворотную части, исключить шарнирные соединения и элементы управления рулем, весовую балансировку руля и т.п. Цельноповоротное оперение позволяет применять весьма тонкий профиль, что также положительно влияет на аэродинамические характеристики. Достоинства цельнопо воротного горизонтального оперения имеют двоякий характер. Во-первых, оперение этого типа значительно более эффективно в диапазоне около- и сверхзвуковых скоростей, что позволяет расширить возможности использования несущих свойств крыла для увеличения грузоподъемности. Во-вторых, более высокая эффективность цельно поворотного оперения позволяет создавать в полетах со сверхкритическими скоростями большие перегрузки, что существенно увеличивает маневренность самолетов с таким оперением в сравнении с самолетами, имеющими обычный руль высоты. Часто поворотный стабилизатор выполняется в виде двух плоскостей (левой н правой), что дает возможность как согласованного, так и дифференциального их отклонения. Эффективность такого оперения может быть дополнительно повышена применением закрылков со сдувом пограничного слоя (TSR.2) или созданием уступа передней кромки (F-15). Упомянутое выше явление скоса потока вблизи горизонтального оперения, расположенного за крылом, может при их неблагоприятном взаимном расположении привести к отрицательным последствиям как при дозвуковых, так и при сверхзвуковых скоростях. В последнем случае наибольшее изменение скоса потока происходит на фронте косых скачков у задней кромки крыла. При полете на больших высотах ввиду значительных углов атаки этот фронт в районе оперения находится высоко над продольной осью самолета. В связи с этим при среднем или верхнем расположении горизонтального оперения (как это сделано на многих околозвуковых самолетах, с тем чтобы вынести оперение из области возмущений, индуцированных крылом) на сверхзвуковом режиме полета оперение может оказаться в зоне наибольшего скоса потока. Это, очевидно, может стать причиной возникновения неустойчивости, поэтому на большинстве сверхзвуковых самолетов классической схемы горизонтальное оперение размещено в нижней части фюзеляжа. В таком случае горизонтальное оперение находится вне области возмущений, а СКОС потока за крылом при сверхзвуковых скоростях бывает наименьшим. Исключение составляют самолеты с очень короткими хвостовыми частями фюзеляжа (SR.53 и «Жерфо»), а также самолеты с прямыми крыльями малого удлинения (F-104 и Т. 18 В), в которых применено Т-образное хвостовое оперение Поскольку расположение оперения влияет также и на возникновение вибраций типа бафтинга, то оно для каждого конкретною случая определяется путем исследований моделей в аэродинамической трубе и испытаний самолета в полете. Как уже упоминалось, при переходе от дозвуковой скорости полета к сверхзвуковой происходит увеличение момента на пикирование, для компенсации которого в самолете классической схемы при передней центровке необходимо создание на горизонтальном оперении направленной вниз силы, увеличивающей момент балансировки. Однако это приводит к уменьшению аэродинамического качества и в конечном счете к сокращению на 10-20% радиуса действия самолета. Обеспечение устойчивости самолета такой ценой, естественно, неприемлемо. Помимо описанных выше способов изменения положения (перемещения вперед) центра давления самолета путем размещения в передней части фюзеляжа дестабилизирующих плоскостей (т.е. путем использования схемы, близкой к схеме «утка»), а также с помощью крыла оживалъной формы (эта проблема освещена в главе, посвященной пассажирским самолетам), практическое применение нашел также метод изменения положения центра тяжести самолета в полете посредством перекачки топлива. Для реализации этого метода потребовалось разработать специальные автоматические устройства, определяющие и изменяющие положение ц.т. самолета при изменении его ад., а также использовать топливные насосы большой производительности, трубопроводы и балансировочные баки в передней и хвостовой частях фюзеляжа. Этот метод обеспечения почти постоянного запаса статической продольной устойчивости при дозвуковых и сверхзвуковых скоростях полета нашел применение в самолетах среднего радиуса действия. Исследования влияния величины аэродинамического качества на увеличение радиуса действия подтвердили целесообразность применения такой системы, несмотря на соответствующее усложнение и утяжеление конструкции. Перекачка топлива применяется как в боевых (В-58 и «Мираж» IVA), так и в пассажирских (Ту-144 и «Конкорд») самолетах. Особые трудности вызывает при этом необходимость обеспечения соответствующей поперечной устойчивости и управляемости при сверхзвуковых скоростях полета и больших углах атаки, поскольку при перекачке топлива происходят изменения аэродинамических, инерционных и жесткостных характеристик самолета. В полете с около и сверхкритическнми скоростями может произойти аэродинамическая блокировка элеронов, поэтому поперечное управление самолетом при таких скоростях обычно затруднено. Уменьшение относительной тол-шины профиля крыла и оперения, рекомендованное вначале для уменьшения волнового сопротивления, оказалось полезным также и для улучшения управляемости, однако проблема этим путем решается лишь частично. Дополнительные нарушения работы элеронов (помимо влияния сжимаемости воздуха) вызывает стреловидность передней кромки крыла. Отрыв пограничного слоя в средней и концевой частях стреловидного крыла приводит к снижению эффективности находящегося там элерона,, в связи с чем нередко последние располагают вблизи фюзеляжа. Прифюзсляжными элеронами оснащены, в частности, самолеты F-1Q0 и F-8. Дополнительное достоинство таких элеронов-меньшая подверженность явлению реверса, а недостаток-уменьшение плеча действия силы, т.е. управляющего момента. Для компенсации уменьшения плеча таких элеронов приходится увеличивать их площадь. В самолетах со стреловидным крылом элероны дополняются либо зачастую заменяются интерцепторами, разметаемыми на верхней поверхности крыла перед элеронами или вблизи задней кромки. Выдвижение интерцептора нарушает обтекание крыла, вызывая уменьшение подъемной силы и увеличение сопротивления. В результате самолет накреняется в сторону того крыла, на котором выдвинут интерцептор. Как уже упоминалось, интерцепторами оснащено 16 самолетов, причем только в двух из них (YF-107A и Т-2) для поперечного управления оказалось достаточно одних лишь интерцепторов. Поскольку для интерцепторов характерно некоторое запаздывание действия, в других самолетах используется их комбинация с дифференциальным управляемым стабилизатором или с элеронами. Первая комбинация реализована только в двух самолетах постоянной геометрии (А-5 и «Ягуар»); чаще всего применяется она в самолетах изменяемой геометрии, которые обычно не имеют элеронов, так как весь размах крыла отводится под механизацию для повышения эффективности крыла при малых углах стреловидности. В этом случае (обычно при малой или умеренной стреловидности крыла) интерцепторы работают совместно с дифференциальным управляемым стабилизатором, выполняющим функции как рули высоты, так и элеронов, В самолетах же постоянной геометрии интерцепторы обычно используются при больших скоростях полета, а элероны в это время блокируются в нейтральном положении. Интересным примером такого взаимодействия могут служить интерцепторы в самолете МиГ-19, размещенные на нижней поверхности крыла. Они выполнены в виде уголковой конструкции, подвешенной на двух кронштейнах и выдвигаемой из крыла. Интерцептор выдвигается на толщину пограничного слоя только на той консоли, где элерон отклоняется книзу. Это вызывает торможение потока и увеличение подъемной силы, повышая тем самым эффективность управления. Эффективность действия элеронов на треугольном крыле достаточно высока. Благодаря большому углу стреловидности, малому удлинению и тонкому профилю волновой кризис возникает здесь при больших скоростях и проявляется в смягченной форме, из-за чего самолету почти не угрожает аэродинамическая блокировка элеронов. Кроме того, малое удлинение предотвращает срыв потока на концах крыла при больших углах атаки. Перемещение центра давления для треугольного крыла при переходе через скорость звука относительно мало. Это положительно влияет на устойчивость, и поэтому в таких самолетах часто обходятся без горизонтального оперения, монтируя руль высоты на задней кромке крыла (схема «бесхвостка»). Поскольку задняя кромка в треугольном крыле обычно весьма коротка, то чаще всего функции элерона и руля высоты объединяются в одной управляющей плоскости, называемой элевоном. Таким образом, элевон служит как для продольного, так и для поперечного управления. При движении ручки управления вперед или назад оба элевона отклоняются соответственно вниз или вверх, действуя, таким образом, как руль высоты. Движение ручки управления в стороны вызывает дифференциальные отклонения, т.е. левый элевон отклоняется вверх, а правый-вниз, либо наоборот, т. е. элевоны работают как обычные элероны. Аналогичным образом работают также зависающие элероны (закрылки-элероны, флапероны). используемые как для поперечного управления, так и для улучшения несущих характеристик самолета, улучшения маневренности и уменьшения скорости взлета и посадки. Поперечное управление с помощью зависающих элеронов и интерцепторов используется на самолете F-16. Поперечное управление может осуществляться также посредством одного управляемого дифференциального стабилизатора. Следует отметить, что на многих современных самолетах со стреловидными или треугольными крыльями поперечная управляемость улучшается в результате установки крыла с отрицательным углом поперечного V. Однако существенного улучшения динамических характеристик сверхзвуковых самолетов при поперечном маневре получить посредством значительного увеличения отрицательного угла поперечного V не удается, так как это приводит либо к поперечной неустойчивости при больших скоростях полета, либо к возможности повреждения концов крыла о землю при взлете или посадке. С учетом этого в самолете TSR.2 применен отгиб концов крыла книзу (что позволяет схема высокоплана с треугольным крылом малого размаха). Поскольку в последнем случае устойчивость самолета оказалась слишком большой, горизонтальное Оперение установлено с большим отрицательным углом поперечного V. При этом расстояние от концов крыла (ИЛИ оперения) до земли оказывается вполне достаточным. Благодаря такому подходу (при одновременном использовании закрылков со сдувом пограничного слоя) для самолета F-4 оказались возможными взлет и посадка с большими углами атаки. Ввиду необходимости применения вертикального оперения с тонкими профилями и большими углами стреловидности, а также из-за его аэродинамического затенения длинным фюзеляжем и крылом малого удлинения путевая устойчивость самолета существенно снижается при малых скоростях полета. Уменьшается она также и при больших сверхзвуковых скоростях по причине снижения эффективности вертикального оперения (из-за изменения распределения давления на профиле), а также вследствие дополнительного затенения, возникающего при полетах на больших высотах, выполняемых с большими углами атаки. Устранение этих недостатков возможно посредством увеличения либо поверхности оперения, либо расстояния между центром давления вертикального оперения и центром тяжести самолета. Поскольку это ведет к увеличению массы конструкции и сопротивления трения, для повышения путевой устойчивости часто используют дополнительное вертикальное оперение под фюзеляжем (где оно находится в невозмушенном потоке). Такой подфюзеляжный киль установлен на экспериментальном ракет ном самолете Х-15 (в обычных самолетах такой подфюзеляжный киль не отвечает требованиям эксплуатации-его надо убирать перед приземлением, а взлет возможен только при малых углах атаки). По этому для повышения устойчивости на серийных сверхзвуковых самолетах применяется либо двухкилевое оперение (например, в Е-266, SR-71, XB-70A), либо однокилевое с подфюзеляжными небольшими (по высоте) килями или аэродинамическими направляющими. Эти поверхности имеют форму и размеры, не затрудняющие взлет и посадку. Они ограничивают поперечное перетекание потока на фюзеляже при полете со скольжением, благодаря чему в создание демпфирующего поперечного момента включается значительно большая поверхность хвостовой части фюзеляжа. Такой способ увеличения путевой устойчивости наиболее рационален, поэтому он и нашел исключительно широкое применение. Распространены одинарные, сдвоенные и даже строенные направляющие и кили (YF-12A), главным образом стационарной конструкции, и только в четырех случаях использованы подвижные конструкции. Одинарные кили последнего типа выполняются либо складывающимися в стороны (F-11), либо втягиваемыми в фюзеляж (YF-12A) на время взлета и посадки для увеличения угла атаки при низком шасси. Сдвоенные подвижные направляющие отклоняются в стороны (F8U-3) так, чтобы обеспечивалось их положение, близкое к вертикальному в сверхзвуковом полете и близкое к горизонтальному после выпускания закрылков. Другой способ увеличения путевой устойчивости состоит в использовании управляемого стабилизатора с отрицательным поперечным V. В этом случае стабилизатор выполняет lвоякую роль: собственно горизонтального оперения, обеспечивающего необходимую продольную устойчивость и управляемость, н аэродинамических направляющих, увеличивающих путевую устойчивость. Оперение такого типа применено, к примеру, на самолете «Тридан» Н (угол поперечного V - 20Х а также на «фантоме» II F-4 (—23е). Подобную же роль выполняют подвижные (опускаемые) либо отогнутые кннзу концы крыла. В самолете XB-7Q использован первый способ, а в TSR,2- второй Значительное повышение эффективности вертикального оперения, а значит, и путевой устойчивости самолета {особенно при околозвуковых скоростях} достигается в случае использования Т-образного хвостового оперения, т.е. горизонтального оперения па верхнем конце киля. Такая компоновка вследствие недостаточной жесткости склонна к бафтингу, тем не менее она применяется в самолетах F-I04, Т. 188 и SR-53 ввиду эффективности как вертикального, так и горизонтального оперения. Из вышесказанного следует, что при переходе на сверхзвуковые скорости полета значительно снизилась эффективность управляющих поверхностей. Это особенно сказалось на поперечной и путевой управляемости в связи с дополнительным неблагоприятным влиянием деформации крыла и вертикального оперения. Ввиду этого, помимо более жесткой конструкции, необходимы дополнительные средства, повышающие эффективность управляющих поверхностей. Так, в некоторых самолетах используются турбулизаторы на руле направления (Х-2, F-102A, F-10Q), дефлекторы (F-102A, В-58, F-5A) либо закругленная задняя кромка крыла (главным образом в самолетах без горизонтального оперения -F-106А, «Дракен» и CF-105). Выше упоминалось, что снижение эффективности руля высоты и увеличение статической продольной устойчивости при сверхзвуковых скоростях потребовали перехода на продольное управление с помощью управляемого стабилизатора, В управлении курсом самолета вертикальное оперение такого типа используется редко и встречается как в однокилевом («Тридан» II, YF-107A, А-5 и TSR,2), так и в двухкилевом (SR-71A и ХВ-70А) варианте.

Система активного управления

Проблемы, описанные в предыдущем разделе, касались системы управления, которую с сегодняшних позиций можно назвать пассивной. Поскольку других систем управления на предыдущем этапе развития авиации не было, то не было и нужды в определении такого подхода как пассивного метода управления. При использовании систем пассивного управления пилот (или автопилот в соответствии с заданной программой) воздействует на управляющие поверхности, которые в обычном положении не выступают за контур неподвижных элементов планера. Составной частью такой системы является механизм управления, связывающий исполнительные плоскости с соответствующими рычагами в кабине экипажа при ко мощи тросов (гибкая проводка управления), тонкостенных труб, изготовленных обычно из алюминиевых сплавов (жесткая проводках либо тросов и труб (смешанная проводка). В начале 70-х годов механизм управления был заменен системой электропередачи сигналов от соответствующих ручек к быстродействующим исполнительным устройствам (ими служат гидроприводы), отклоняющим управляющие поверхности. Работу системы обеспечивает цифровое вычислительное устройство, получающее информацию от датчиков угловой скорости, ускорения, угла атаки и т.п. и при необходимости корректирующее решения пилота, сигналами которых служат отклонения командных рычагов управлении. Электродистанционная система управления позволила реализовать активное управление, основанное на автоматическом отклонении рулей в ответ на возникающие отклонения параметров полета от заданных. Эта система работает независимо от пилота, допуская тем не менее возможность его вмешательства в процесс управления. Обычно электродистанционная система выполняет ту же роль, что и механическая, и может применяться самостоятельно как основная или аварийная либо параллельно с механической системой, которой отводится роль аварийной. Самолет с системой активного управления выполняется как статически неустойчивая система, особенно по продольной оси, т.е. используется оперение меньшей площади. Неустойчивость компенсируется динамически посредством непрерывного автоматического воздействия системы на управляющие поверхности, т.е. путем их отклонения, приводящего к уравновешиванию действующих на самолет моментов. При таком управлении обеспечиваются:
- высокая маневренность, связанная, во-первых, с уменьшением запаздывания отклонения управляющей поверхности в ответ на сигнал системы управления и, во-вторых, с использованием предкрылков к закрылков в качестве управляющих поверхностей;
- более быстрая реакция самолета на воздействие порывов ветра и уменьшение нагрузок, действующих на конструкцию (что повышает усталостную выносливость планера),
- разгрузка пилота от реагирования на изменение балансировки самолета, особенно от изнурительного постоянного реагирования на изменение параметров траектории полета на малой высоте в условиях турбулентной атмосферы.
Обычно это приводит к улучшению характеристик самолета н живучести планера, а также комфортабельности полета. В боевом самолете это повышает эффективность вооружения, позволяет экипажу сконцентрировать свое внимание на выполнении задания, сохраняет на более длительный период времени его оперативную готовность и т.п. Включение в систему активного управления носовых щитков или закрылков позволяет управлять распределением нагрузки вдоль размаха крыла. Например, при одновременном отклонении элеронов кверху нагружаются концы крыла, а при отклонении закрылков книзу происходит дополнительное нагружение его корневых частей. При этом, сохраняя постоянной подъемную силу, крыло будет воспринимать меньший изгибающий момент при полете самолета в турбулентной атмосфере или во время выполнения маневров. Таким образом, управление самолетом по шести степеням свободы потребует применения только 6-7 подвижных плоскостей (2 консоли крыла, 2 плоскости горизонтального оперения и 2 или 3 плоскости вертикального оперения) в сравнении с 9-15 подвижными элементами, используемыми в современных сверхзвуковых самолетах (рули, элероны, носовые щитки, предкрылки и закрылки, тормозные щитки, интерцепторы) Такой результат можно получить и для самолета классической схемы, Однако необходимо дополнительно установить на нем одну вертикальную и две горизонтальные плоскости либо только две плоскости по схеме V-образного оперения, которые надо разместить в носовой части фюзеляжа. Для новой схемы характерны вес свойства активного управления, а также дополнительные качества, вытекающие из увеличения числа степеней свободы. С точки зрения боевого применения самолета такая система, кроме прочего, обеспечивает:
- наведение самолета в плоскости крыла при атаке на наземные цели, что увеличивает точность сброса неуправляемых бомб {эта точность зависит от момента крена, воздействующего на самолет);
- ориентацию фюзеляжа со стационарным вооружением по линии прицеливания независимо от траектории полета в атаках на наземные цели с малой высоты, что увеличивает время атаки одной цели либо число атакуемых целей;
- управление положением фюзеляжа в воздушном бою, а также большую маневренность, что сокращает время прицеливания и предохраняет самолет от возможного столкновения с атакуемой целью;
- бомбардировку при почти вертикальном пикировании благодаря эффективному управлению сопротивлением за счет поворота всего крыла, что увеличивает точность бомбометания и уменьшает вероятность уничтожения самолета наземными средствами противовоздушной обороны;
- более высокие ускорения при сохранении неизменными характеристик двигательной установки посредством управления сопротивлением самолета, что может обеспечить наивыгоднейшие условия перед началом воздушного боя;
- лучшие условия выруливания, взлета и посадки благодаря использованию боковых сил, горизонтальному положению фюзеляжа (лучшей обзорности, большему удалению вооружения от земли), а также благодаря управлению сопротивлением во время разбега и пробега.
Из вышесказанного следует, что применение автоматического активного управления может дать многообразные преимущества. Поэтому после решения проблем волнового кризиса и обеспечения самолету классической схемы надлежащей управляемости во всем диапазоне эксплуатационных скоростей были начаты работы по внедрению электродистаншюнных систем управлении. В первую очередь были заменены электрическими некоторые механические тяги (например, управление носовыми щитками в самолете F-104, интер-цепторами в «Мираже» F.8, а также внутренними секциями элевонов в «Мираже» 111), а затем введены устройства стабилизации и демпфирования в поперечном управлении, искусственно повышающие устойчивость. Проведенные исследования показали, что даже ограниченное применение активного управления приносит значительные преимущества. Например, введение в стратегическом околозвуковом бомбардировщике «Боинг» B-S2 протнвотурбу-лентной системы, приводящей в действие руль высоты и закрылки, повысило усталостный ресурс планера на 35—50% без дорогостоящего усовершенствования самой конструкции. Подобную же задачу выполняют две дополнительные небольшие несущие плоскости, установленные в передней части фюзеляжа самолета В-1, которые включены в электрическую систему активного гашения изгибных колебаний, возникающих при полете в турбулентной атмосфере. Введение первых систем активного управления относится к началу 70-х годов, Первым шагом в этом направлении была модернизация самолетов классической схемы, в которых механические устройства управления были заменены электродистанционной системой (например, у самолетов / F-4 и F-8). Следующим шагом было применение дополнительного переднего оперения (горизонтального и вертикального) для создания вертикальных и боковых сил, позволяющих самолету выполнять «скачки» вверх-вниз либо в стороны. Характеристика первого типа реализована в самолете F-4CCV, на котором установлено дополнительное горизонтальное оперение, составляющее 7,5% поверхности основного крыла, а также небольшой дополнительный киль. Подобным образом модернизирован и самолет классической схемы YF-16CCV, в котором использованы только две дополнительные плоскости, работающие как V-обраэное оперение, выполняющее роль вертикального и горизонтального оперения. Практическим результатом первого этапа работ над активным управлением было то, что автоматическая электродистанционная система управления предусматривалась в качестве основной уже при проектировании самолетов «Торнадо» (с механической аварийной системой), самолет F-16 проектировался с исключительно электрической цифровой системой без типичной рукоятки управления, а затем аналогичные системы управления были применены в самолетах «Мираж» 2000, F-1S и «Сюпер-Мираж» 4000. Активное управление охватывает множество различных технических вопросов, часть ИЗ которых еще требует дополнительных исследований. Однако уже можно утверждать, что использование активного управления дает наибольший эффект в боевых пилотируемых и беспилотных самолетах.

  • Категория: Сверхзвуковая авиация 60х годов
  • Просмотров: 3121
    Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
    Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
    Поиск по сайту
    Личный кабинет
    Актуально

    Ан-225 «Мрия» - самый большой в мире самолет Ан-225 «Мрия» - самый большой в мире самолет. Создал самолет киевский КБ имени Антонова. Этот уникальный самолет установил аж 240 мировых рекордов. Не несмотря на свой почтенный возраст и то, что существует лишь одна единица этого самолета, он все еще не уступает своим конкурентам. Если поступит заказ то будет достроен второй гигант, который готов лишь на 60-70%.


    Мировые авиакомпании приостанавливают рейсы в Израиль Полеты в Тель-Авив приостановили также польские авиалинии „LOT”. Авиакомпании из Европы и Соединенных Штатов Америки приостанавливают рейсы в Израиль. Причина - обострение израильско-палестинского конфликта. После того, как полтора километра от аэропорта „Бен Гурион” в Тель-Авиве упала ракета, Федеральная авиационная администрация США решила, что, как минимум, в течение суток свои рейсы в Израиль приостанавливают авиакомпании „Delta”, „United” и „US Airways”.


    Лондон: тысячи пассажиров улетели без багажа Тысячи пассажиров ждут за границей своих сумок и чемоданов, который потерялись во время вылета из Лондона. С четверга в лондонском аэропорту Heathrow наблюдается хаос с багажом. Тысячи пассажиров ждут за границей своих сумок и чемоданов, который потерялись во время вылета из Лондона. Дирекция аэропорта уверяет, что весь багаж будет найден.




    Капитан самолета не понял шуток...Шутки двух пассажиров стали причиной того, что пассажирский самолет был принудительно посажен парой британских истребителей. Шутки двух пассажиров стали причиной того, что пассажирский самолет был принудительно посажен парой британских истребителей. Лайнер с более чем 300 пассажирами и членами экипажа на борту направлялся из пакистанского Лахора в британский Манчестер.


    Польша закупает “Boeing 787 Dreamliner”Самолеты заказала польская авиакомпания LOT. Кстати, LOT является первыми в Европе авиалиниями, которые заказали эти современные авиалайнеры, сообщает газета “Rzeczpospolita”. “Boeing 787” ждут в Варшаве не только сотрудники польской авиакомпании и польские любители авиации, но также поклонники этого самолета в Европе. В интернете они объединяются в группы и покупают билеты на европейские трассы LOT, на которых будет летать “Dreamliner”.


    Из Минска в Гомель за час Еще до вылета предвзято отнесся к возможности попасть на самолете в Гомель.

    Скепсис был вызван возрастом самолетов АН - 24: последний экземпляр этой модели выпустили тридцать один год назад.

    Но, когда поднялись в воздух, понял, что возраст неопытному глазу пассажира замечается только по каким-то внешним деталям.


    Завод «Антонов» до конца года выпустит новый самолетГосударственное предприятие «Антонов» планирует до конца 2014 года завершить сборку первого опытного экземпляра нового самолета Ан-178 грузоподъемностью до 18 тонн. Сооружение опытного экземпляра нового Ан-178 грузоподъемностью до 18 т., который сменит на рынке Ан-12 начата компанией в 2013 г., а до конца 2014 года поднять первый опытный Ан-178 в небо.



    Вертолет Ка-50 «Черная акула»Хищный, узкий фюзеляж маскирует значительные размеры боевой машины. Вертолет имеет высоту 4,9 метра, его длина с учетом винтов 15,9 метра. Винты имеют диаметр 14,5 метра. «Хребет» вертолета образует собой несущая балка шириной и высотой один метр. На эту балку, крепкую как конструкция моста, навешиваются двигатели. Интересно отметить, что целых тридцать минут двигатель может работать вообще без масла.


    Пе-8 самолет Сталина

    Реклама
    Даты авиации
    Сегодня: среда 21 декабря 2016

    Счетчик посещений
    Понедельник257
    Вторник258
    Среда127
    Четверг223
    Пятница211
    Суббота174
    Воскресенье227

    Всего хитов:2619
    Было всего:46942
    Рекорд:307
    Почтовая рассылка
    ГлавнаяО компанииИКАОИАТАКонтакты
    © Авиационная аналитическая компания «Авиас»
    Rambler's Top100